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This work is dedicated, in equal measure, to electrons and to coffee.  

Without them, none of this would have been possible.
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CHAPTER 1: GENERAL INTRODUCTION

 

Overview 

 

 The landscape of a potential energy surface is marked by chemically interesting 

features. Hills and valleys correspond to transition states and reactive intermediates; the 

deepest valley gives the most stable configuration. Mapping these features for individual 

molecules and for the interactions between molecules is one of the goals of computational 

chemistry. 

 The dispersion energy is a weak attractive force in intermolecular interactions. 

Dispersion energy results from a purely quantum mechanical effect, in which instantaneous 

multipoles on one molecule induce multipoles on another. Among neutral atoms or 

molecules that lack permanent multipole moments, the dispersion interaction is the principal 

attractive force. Dispersion also plays a significant role in the interaction between molecules 

with diffuse π clouds. This interaction is often difficult to capture with standard 

computational chemistry methods, so a comparison of the results obtained with various 

methods is itself important. 

 This work presents explorations of the potential energy surface of clusters of atoms 

and of the interactions between molecules. First, structures of small aluminum clusters are 

examined and classified as ground states, transition states, or higher-order saddle points. 

Subsequently, the focus shifts to dispersion-dominated π-π interactions when the potential 

energy surfaces of benzene, substituted benzene, and pyridine dimers are explored. Because 

DNA nucleotide bases can be thought of as substituted heterocycles, a natural extension of 

the substituted benzene and pyridine investigations is to model paired nucleotide bases. 

Finally, the success of the dispersion studies inspires the development of an extension to the 

computational method used, which will enable the dispersion energy to be modeled – and the 

potential energy surface explored – in additional chemical systems. 
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Dissertation Organization 

 

 This introduction describes the effective fragment potential (EFP) method and the 

various quantum mechanical methods used in subsequent chapters of this dissertation. The 

next chapter details an ab inito quantum mechanical study of 13-atom aluminum clusters, 

while the following three chapters concern EFP studies of aromatic dimers in which 

dispersion energy makes a significant contribution to the attraction between monomers. The 

final chapter prior to the Conclusions describes theory and code development toward a means 

of computing dispersion energy in mixed ab inito-EFP systems. 

 Chapter 2 details a study of the structures and energies of the small aluminum clusters 

! 

Al13  and 

! 

Al13
" , involving some of the highest-level ab initio computations performed on these 

clusters to date. Most of the previous theoretical studies on these clusters used density 

functional methods that did not always converge to the correct minimum-energy structures. 

The electron affinity of 

! 

Al13  was calculated and found to agree extremely closely with the 

experimental value, giving credence to the ab inito results. 

 Chapters 3, 4, and 5 describe EFP studies of substituted benzene dimers, pyridine 

dimers, and DNA nucleotide base pairs, respectively. All of these systems involve aromatic 

rings with π electron clouds that can give rise to strong dispersion energy interactions 

between molecules. Because dispersion interactions arise from electron correlation, they are 

difficult to model with density functional theory or with computationally inexpensive, low-

level ab inito methods that do not properly account for this effect. The EFP method is shown 

to model dispersion interactions with an accuracy approaching that of high-level ab inito 

methods, at a fraction of the computational cost. 

 Finally, Chapter 6 presents progress toward the development of a theoretical model to 

calculate the dispersion energy term in the interaction between a molecule modeled with EFP 

and a molecule modeled with an ab initio method, such as Hartree-Fock or second-order 

perturbation theory (MP2). 
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Theoretical Background 

 

Ab inito methods 

 Ab inito, “from the beginning,” refers to a set of quantum mechanical methods 

derived from the first principles of quantum mechanics. Generally, this description is applied 

to methods that make certain approximations in order to solve the time-dependent 

Schrödinger equation1-5 

  

! 

"#( r x 1,
r 
x 2,...,

r 
x n;t)

"t
= $

i
h

) 
H #(r x 1,

r 
x 2,...,

r 
x n;t)                   (1) 

The wavefunction, Ψ, is a state function in that it contains all the information about the 

atomic or molecular system. Ψ is a function of the position   

! 

r 
x n  of particle n (here, the 

particles are electrons and nuclei) and time t.   

! 

h  is Planck’s constant, h, divided by 2π; i is the 

square root of -1; and   

! 

) 
H  is the Hamiltonian operator, a function that accounts for the kinetic 

and potential energy of the system. 

 The first approximation made by many ab inito methods is to consider only the states 

in which the position and the time components of the wavefunction are separable. Then the 

wavefunction can be expressed as a spatial part multiplied by a time-dependent part: 

   

! 

"( r x 1,
r 
x 2,...,

r 
x n;t) =#( r x 1,

r 
x 2,...,

r 
x n ) f (t)                   (2) 

This allows the simplification of the Schrödinger equation in (1) to its time-independent 

form, 

   

! 

) 
H "( r x 1,

r 
x 2,...,

r 
x n ) = E"( r x 1,

r 
x 2,...,

r 
x n )                    (3) 

where E is the total energy of the system. Typically, the lowest energy state is sought; 

solving the equation then means finding the optimal positions for every particle to give the 

lowest value of E. 

 For a chemical system, the Hamiltonian operator takes the form 

   

! 

) 
H =

) 
T n +

) 
T e +

) 
V ne +

) 
V ee +

) 
V nn                     (4) 

where the terms correspond to the kinetic energy of the nuclei, the kinetic energy of the 

electrons, the potential energy of the nuclear-electronic attraction, the potential energy of the 

electron-electron repulsion, and the potential energy of the nuclear-nuclear repulsion, 

respectively. These terms can be written explicitly as 



www.manaraa.com

 4 

 
  

! 

) 
H = " 1

2
#2

mA

"
1
2

# i
2 "

ZAr 
r iAA=1

n

$
i=1

e

$
i=1

e

$
A=1

n

$ +
1
r 
r ij

+
ZA ZBr 

r ABB<A
$

A=1

n

$
j< i
$

i=1

e

$                (5) 

where ∇ is the Laplacian operator, 

! 

mA  is the ratio of the mass of a nucleus to the mass of an 

electron, 

! 

ZA  is the charge of nucleus A,   

! 

r r ij  is the distance between particle i and particle j, 

and the summations go over all of the nuclei (n) or electrons (e) in the system. Although Eq. 

(5) gives the true Hamiltonian, when solving the Schrödinger equation, the last two terms of 

Eq. (5) give rise to a “many-body problem” in which the position of each particle depends on 

the position of every other particle. Simplifications must be made to these terms to make the 

problem tractable. 

 The first simplification is the Born-Oppenheimer approximation6, which assumes the 

wavefunction can be separated into a nuclear part and an electronic part: 

  

! 

"total (
r 
x 1

nuc, r x 2
nuc,...; r x 1

elec, r x 2
elec,...) ="nuc (

r 
x 1

nuc, r x 2
nuc,...)"elec (

r 
x 1

elec, r x 2
elec,...)                           (6) 

where   

! 

r 
x nuc  gives the coordinates of the nuclei and   

! 

r 
x elec  gives the coordinates of the electrons. 

In physical terms, Eq. (6) says that the nuclei are stationary with respect to the electrons, a 

reasonable approximation in many cases because the velocity of nuclei is much smaller than 

that of the much lighter electrons. This approximation eliminates the nuclear kinetic energy 

term (  

! 

) 
T n  in Eq. (4)) from the Hamiltonian, and it allows the nuclear potential energy to be 

calculated once and held constant for the duration while the Schrödinger equation is solved. 

The Hamiltonian of Eq. (5) is then reduced to 

 
  

! 

) 
H = " 1

2
# i
2 "

ZAr 
r iAA

$
i=1

e

$
i=1

e

$ +
1
r 
r ijj< i

$
i=1

e

$                    (7) 

Eq. (7) contains no nuclear energy terms and depends only on the charge of the stationary 

nuclei. When used as the Hamiltonian in the time-independent Schrödinger equation of Eq. 

(3), it gives the electronic Schrödinger equation: 

   

! 

) 
H elec"elec = Eelec"elec                      (8) 

After the electronic Schrödinger equation is solved, the nuclear part can be solved separately. 

The nuclei are then permitted to change position within the field produced by the electrons, 

determined in Eq. (8). The total energy of the system is the sum of the electronic energy 

! 

Eelec  

from Eq. (8) and the repulsive nuclear potential energy. 
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 Further approximations are needed to treat the electron-electron interactions (  

! 

) 
V ee  in 

Eq. (4)) in systems with more than one electron. The most basic approximation is to replace 

explicit electron-electron interactions with an averaged interaction and solve self-

consistently. Each electron is subjected not to every other individual electron, but to the mean 

field they create. This approximation is known as the self-consistent field (SCF) or Hartree-

Fock7-10 (HF) method. 

 The one-electron Fock operator for electron 1 is given by 

 
  

! 

) 
F a (1) = "

1
2
#1
2 "

ZAr r 1A

+
A=1

n

$ [
) 
J j (1) "

) 
K j (1)]

j=1

e

$                   (9) 

where   

! 

) 
J  is the Coulomb operator and   

! 

) 
K is the exchange operator. The wavefunction 

! 

"a  of an 

electron is a spin-orbital, which takes the form 

 
  

! 

"a (
r 
x ) ="a (

r 
r ;#) =

$a (
r 
r )%(#)

$a (
r 
r )&(#)

' 
( 
) 

                         (10) 

where   

! 

"a (
r r ) is the spatial component and the spin component is either α or β (spin up or spin 

down). For simplicity, the discussion may be restricted to closed shell chemical systems – 

those in which all electrons are paired in orbitals (paired electrons have wavefunctions with 

identical spatial components but opposite spins). In this case, the Fock operator for electron 1 

becomes 

 
  

! 

) 
F a (1) = "

1
2
#1
2 "

ZAr r 1A

+
A=1

n

$ [2
) 
J j (1) "

) 
K j (1)]

j=1

e / 2

$                 (11) 

The one-electron operators   

! 

) 
J  and   

! 

) 
K  act on orbitals via the following equations: 

 
  

! 

) 
J j (1)"a (1) = "a (1) dr r 2# $ " j (2)

2 r r 12
%1                 (12) 

representing the average local potential at   

! 

r r 1  arising from an electron in orbital φj, and 

 
  

! 

K j (1)"a (1) = " j (1) dr r 2 # " j
* (2)v r 12

$1"a (2)%                            (13) 

The exchange energy is a purely quantum mechanical effect arising from symmetry 

considerations: the fact that a wavefunction for multiple indistinguishable fermions, like 

electrons, must change sign if the labels of two particles are interchanged. 

   

! 

"( r x 1,
r 
x 2,...,

r 
x i,...,

r 
x j ,...,

r 
x n ) = #"( r x 1,

r 
x 2,...,

r 
x j ,...,

r 
x i,...,

r 
x n )               (14) 

The Fock operator acts on a set of orbitals {φ1,…, φn} via 
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! 

) 
F i"i = #i"i                     (15) 

to give orbital energies ε1,…,εn.  

In quantum chemical computations, each one-electron orbital itself is a linear 

combination of basis functions. The ith molecular orbital φi can be represented by a 

summation over basis functions {χ1,…, χn}: 

! 

"i = C#i$#
# =1

N

%                     (16) 

where 

! 

Cµi  are LCAO11 (linear combination of atomic orbitals) coefficients. Basis sets are 

usually comprised of Gaussian functions. An infinite number of basis functions in linear 

combination could be used to construct any other well-behaved function, such as a 

(physically meaningful) wavefunction. While using an infinite number of basis functions is 

not computationally tractable, using as large a basis set as possible gives more flexibility to 

the construction of orbitals. 

 The Hartree-Fock equations can be written in matrix form. Using the expression in 

Eq. (16) for the molecular orbitals and inserting into Eq. (15), the Fock operator acting on 

electron 1 can be expressed as 

 
  

! 

) 
F (1) C"i#"

"

$ (1) = %i C"i#"
"

$ (1)                  (17) 

Multiplying by 

! 

"µ
* (1)  and integrating over electron 1 gives 

 
  

! 

C"i dr r 1#
"

$ %µ
* (1)

) 
F (1)%" (1) = &i C"i

"

$ dr r 1# %µ
* (1)%" (1)               (18) 

The integrals on the left are defined as matrix elements of the Fock operator, and those on the 

right as elements of the overlap matrix, S. Then, 

 

! 

Fµ"
"

# C"i = $i Sµ"C"i
"

#                   (19) 

where F is the Fock matrix, or 

 

! 

FC = SC"                     (20) 

The energy matrix ε can be made diagonal via a unitary transformation, which only changes 

the wavefunction by a phase factor; this affects nothing observable. The Fock matrix was 

described previously as consisting of matrix elements of the one-electron Fock operator, 

given in Eq. (11). More specifically, 
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! 

Fµ" = dr r 1# $µ
* (1)

) 
F (1)$" (1) = dr r 1# $µ

* (1)
) 
h (1) + 2

) 
J a (1) %

) 
K a (1)

a
&

' 

( 
) 

* 

+ 
, $" (1)            (21) 

Using the notation 
  

! 

rs pq( ) = dr r 1d
r r 2" # r

*(1)# s(1)
r r 12# p

* (2)#q (2) , this simplifies to 

 

! 

Fµ" = hµ" + 2 µ" aa( ) # µa a"( )
a
$ = hµ" + C%aCa&

a
$
' 

( 
) 

* 

+ 
, 

%&

$ 2 µ" %&( ) # µ%&"( )[ ]        (22) 

The density matrix for the orbital (LCAO) coefficients, D, is defined as the product of the 

coefficient matrix and its transpose, 

 

! 

D = CTC                     (23) 

So, 

 

! 

Fµ" = hµ" + D#$ 2 µ" #$( ) % µ#$"( )[ ]
#$

&                 (24) 

At the onset of solving the Hartree-Fock equations, neither the orbitals nor the 

energies are known. However, the matrix equation (20) can be solved iteratively. A basis set 

is chosen and a guess is made at the orbital coefficient matrix, C. From this, the orbital 

coefficient density matrix D can be computed. The Fock matrix is then constructed via Eq. 

(24) and diagonalized. Since the energy matrix ε is diagonal, the diagonalization of the Fock 

matrix gives a new set of orbital coefficients, which can then be used to compute a new 

density matrix. The process continues until the density matrix ceases to change (or, in 

practical terms, until the difference between the current and previous iterations of the density 

matrix differ by less than a predetermined value). 

The many-electron wavefunction is an antisymmetrized product of the one-electron 

Hartree-Fock orbitals. As shown in Eq. (14), the wavefunction must be antisymmetric; 

correct symmetry is obtained by constructing a normalized linear combination of Hartree 

products. This linear combination can be expressed conveniently in the form of a Slater 

determinant 

! 

"elec =
1
N!

#1(1) #2(1) ... #k (1)
#1(2) #2(2) ... #k (2)
... ... ...

#1(N) #2(N) ... #k (N)

                (25) 
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where N in the normalization constant is the total number of electrons, k is the number of 

spin-orbitals φ, and the number in parentheses is the number of the electron (i.e. electron i 

having coordinates   

! 

r r i ). 

 Hartree-Fock is a relatively simple, computationally inexpensive ab initio method, 

scaling as O(N4) in the number of basis functions. Additionally, it has the advantage of being 

variational: the Hartree-Fock energy obtained from any given set of molecular orbitals is 

always an upper bound to the true energy that would be obtained if the full electronic 

Schrödinger equation were solved for the system. Since no set of orbitals can give an energy 

that is lower than the true energy, orbitals can be refined to minimize the energy. The 

minimum Hartree-Fock energy for a chemical system, as the basis set approaches 

completeness, is the Hartree-Fock limit. 

Since it is a very basic approximation method, however, Hartree-Fock fails to 

describe many chemical systems accurately because it does not fully account for the 

correlated motion of electrons. An accurate depiction of electron correlation is lost when the 

mean field approximation is employed, rather than explicitly treating the interaction of each 

electron with every other electron. Specifically, while Hartree-Fock theory accounts for 

Fermi correlation (i.e. electron exchange) between electrons of like spin, it entirely neglects 

the Coulomb correlation between electrons with opposite spin. Higher levels of theory must 

be used to recover some of this electron correlation energy. 

 One of the most common methods utilized to go beyond the Hartree-Fock 

approximation is second-order Møller-Plesset perturbation theory12 (MP2). In this method, 

electron correlation is treated as a small perturbation to a Hartree-Fock-like Hamiltonian: 

   

! 

) 
H =

) 
H 0 + "

) 
V                     (26) 

Here, the MP2 Hamiltonian   

! 

) 
H  is expressed as the sum of the unperturbed (zeroth-order) 

Hartree-Fock Hamiltonian 
  

! 

) 
H 0 =

) 
F (i)

i
" =

) 
h (i) +

) v HF (i)[ ]
i
"  and a perturbation 

  

! 

) 
V = rij

"1 " v HF (i)
i
#

i< j
#  representing the correlation potential.   

! 

) 
V  is multiplied by a parameter, 

λ, that can vary from 0 (no perturbation) to 1 (full perturbation). The Schrödinger equation 

with the perturbed Hamiltonian is then 
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! 

(
) 
H 0 + "

) 
V )#n = En#n                    (27) 

The energy and wavefunction can be written in the form of a power series in λ: 

 

! 

En = En
(0) + "En

(1) +
"2En

(2)

2
+ ...+ "kEn

(k )

k!
+ ...                (28) 

 

! 

"n ="n
(0) + #"n

(1) +
#2"n

(2)

2
+ ...+ #k"n

(k )

k!
+ ...                (29) 

where the superscripts in parentheses indicate the order of the derivative in λ. When λ=0, Eq. 

(28) and (29) reduce to the unperturbed values, leaving only the first term in each series (the 

“zeroth” derivative). When the values for 

! 

En  and 

! 

"n  given by Eq. (28) and (29) are inserted 

into the Schrödinger equation (27), the resulting terms can be grouped into an infinite series 

of simultaneous equations based on like powers of λ. The zeroth-order equation (the 

collected terms that are multiplied by λ0 = 1) is simply the unperturbed Schrödinger equation, 

Eq. (3), with ground state energy 

! 

E0
(0) and wavefunction 

! 

"0
(0). The first-order terms are 

grouped to obtain expressions for 

! 

En
(1) and 

! 

"n
(1) in terms of the zeroth-order energy and 

wavefunction, then the second-order terms can be grouped to obtain expressions for 

! 

En
(2) and 

! 

"n
(2) in terms of the first-order – and, in turn, zeroth-order – energies and wavefunctions.  

The first-order energy correction is the expectation value of the perturbation operator, 

i.e. 

 
  

! 

E0
(1) = "0

(0) ) 
V "0

(0) = "0
(0)( r x )( )#

* ) 
V "0

(0)(r x )dr 
x                 (30) 

The sum of the zeroth-order energy and the first-order energy correction gives the Hartree-

Fock energy, so perturbation theory corrections to Hartree-Fock begin with the second-order 

terms. The second-order correction to the ground state energy is given by 

 

! 

E0
(2) =

"0
(0) V "n

(0) 2

E0
(0) # En

(0)
n>0
$                   (31) 

The summation in Eq. (31) goes over all states but the ground state. 

Spin component scaled second-order perturbation theory13-15 (SCS-MP2) is a semi-

empirical adaptation of MP2 that has shown greater accuracy in modeling some chemical 

systems for which MP2 is known to be in error. The method’s origins lie in the fact that 

Hartree-Fock (equivalent to MP1) uses an unbalanced treatment of electron pairs that have 
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the same spin versus those with opposite spin. As previously discussed, Hartree-Fock 

electron correlation accounts for Fermi correlation (between electrons of like spin), but 

entirely neglects Coulomb correlation (between electrons of opposite spin). Building on this 

unbalanced description causes MP2 to give a biased treatment of short-range versus long-

range correlation effects. In particular, MP2 often overestimates the correlation of distant 

electrons with the same spin. SCS-MP2 attempts to correct for this source of error by 

separating the second-order energy correction into components dealing with parallel spins 

and those dealing with anti-parallel spins, multiplying each by a different, empirically-

determined scaling factor: 

! 

ESCS
(2) = pT e""

(2) + e##
(2)$$( ) + pS e"#

(2)$                  (32) 

where α and β are the possible spins of interacting electrons e and the scaling factors pT and 

pS have the values 1/3 and 6/5, respectively. 

 Resolution of the identity perturbation theory (RI-MP2),16,17 another variant of MP2, 

employs approximations to reduce the most computationally demanding four-center two-

electron repulsion integrals to combinations of less computationally expensive two- and 

three- center, one- and two-electron integrals. 

 Second-order perturbation theory is often the method of choice for ab inito quantum 

mechanical calculations; it accounts for electron correlation reasonably well in many 

chemical systems without incurring an unbearable computational cost. (MP2 scales as O(N5) 

in the number of basis functions.) However, because the exact Hamiltonian is not used, 

perturbation theory is not variational. Additionally, while it can be extended to higher orders 

of energy corrections (MPn, where n is an integer), it may not converge for larger n. 

 Coupled cluster theory18-21 is a more computationally expensive, but generally even 

more accurate, alternative to MP2. The coupled cluster wavefunction is a linear combination 

of Hartree-Fock ground state and excited state Slater determinants; the excited state 

determinants account for the electron correlation. The coupled cluster wavefunction is 

expressed as 

   

! 

" = e
) 

T #0                     (33) 
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where 

! 

"0  is the ground state Slater determinant of Hartree-Fock molecular orbitals and   

! 

) 
T  

is the cluster operator, which is the sum of the single excitation operator (  

! 

) 
T 1), double 

excitation operator (  

! 

) 
T 2 ), triple excitation operator (  

! 

) 
T 3 ), and so on. 

   

! 

) 
T =

) 
T 1 +

) 
T 2 +

) 
T 3 + ...                   (34) 

  

! 

e
) 
T  can be expanded in a Taylor series as 

 
  

! 

e
) 
T =1+

) 
T +

) 
T 2

2!
+ ...=1+

) 
T 1 +

) 
T 2 +

) 
T 1
2

2
+

) 
T 1

) 
T 2 +

) 
T 2
2

2
+ ...               (35) 

The excitation operators take the form 

 
  

! 

) 
T 1 = ti

a ) a i
) a a

T

a
"

i
"                    (36) 

 
  

! 

) 
T 2 =

1
4

tij
ab ) a i

) a j
) a a

T ) a b
T

a,b
"

i, j
"                   (37) 

etc., where   

! 

) a T  and   

! 

) a  are the “creation” and “annihilation” operators, i and j are occupied 

orbitals, and a and b are virtual (unoccupied) orbitals. The effect of these operators is to 

“annihilate” one or more of the electrons in the occupied orbitals and “create” a 

corresponding number of electrons in the virtual orbitals. It is necessary to solve for the 

coefficients 

! 

ti
a  and 

! 

tij
ab  during the process of finding 

! 

" . This is done by solving the set of 

equations 

   

! 

"0 e#(
) 
T 1 +

) 
T 2 +...) ) H e(

) 
T 1 +

) 
T 2 +...)"0 = E                  (38) 

   

! 

"S e#(
) 

T 1 +
) 

T 2 +...) ) H e(
) 
T 1 +

) 
T 2 +...)"0 = 0                  (39) 

   

! 

"D e#(
) 
T 1 +

) 
T 2 +...) ) H e(

) 
T 1 +

) 
T 2 +...)"0 = 0                  (40) 

and so on, where 

! 

"0  is the ground state wavefunction, 

! 

"S  is the wavefunction of single 

excitations, 

! 

"D  is the wavefunction of double excitations, etc. The cluster operator (and the 

number of equations) is truncated at the desired number of excitations. The “gold standard”22 

of computational chemistry is coupled cluster with singles, doubles, and perturbatively-

calculated triple excitations – CCSD(T)23. CCSD(T) scales as O(N7) in the number of basis 

functions. 

 While not used in any of the following chapters, it is worth noting that all of the 

electron correlation energy could be recovered (the exact solution to the time-independent 
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Schrödinger equation, within the Born-Oppenheimer approximation, could be obtained) if 

full configuration interaction24,25 (CI) were used with an infinite basis set. The CI 

wavefunction is, similarly to the coupled cluster wavefunction, a linear combination of 

excited state wavefunctions: 

 

! 

" = ci
a#i

a +
a

vir

$
i

occ

$ cij
ab#ij

ab +
a<b

vir

$
i< j

occ

$ cijk
abc#ijk

abc + ...
a<b<c

vir

$
i< j<k

occ

$                (41) 

CI can be truncated after any term. Full CI excites all the electrons of the system into the 

virtual orbitals. CI is incredibly computationally expensive, scaling exponentially with the 

number of basis functions, so it is only a viable method for the smallest chemical systems. 

 High-level ab initio calculations are often the standard on which other computational 

methods are judged, especially when experimental data is not available for a particular 

chemical system. Chapters 3 and 4 describe studies in which MP2, SCS-MP2, and CCSD(T) 

calculations have provided virtually the only data available for the systems of interest (non-

equilibrium states of benzene, substituted benzene, and pyridine dimers). High-level ab initio 

calculations may also aid in interpreting ambiguous experimental (spectroscopic) data, or 

mediate between conflicting results found with lower-level calculations. Such is the case 

presented in Chapter 2, an investigation of the structure of small aluminum clusters. Finally, 

ab initio methods are the foundation of the field of computational chemistry. As such, the 

language, concepts, and theories associated with ab initio methods necessarily touch all work 

in this field in some fashion. 

 

Density functional theory 

 Density functional theory (DFT) is a popular alternative to ab inito methods for 

electronic structure studies. Unlike the methods discussed previously, DFT does not attempt 

to solve the Schrödinger equation. Instead, it begins with the idea that the energy of a 

chemical system is a functional (a function of another function) of the electron density, ρ, 

which is in turn a function of the coordinates of the nuclei. Because the electron density 

depends on only three spatial coordinates, this would eliminate the many-body problem 

associated with solving the Schrödinger equation. The premise behind DFT is sound: in 

1964, Hohenberg and Kohn26 showed that various important ground state properties of a 
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many-electron system are uniquely determined by a functional of the electron density, and 

that the correct ground state electron density minimizes this functional. However, the exact 

mathematical form of this functional is not known. 

Kohn and Sham27 introduced a DFT framework that resembles the Hartree-Fock 

method, which retains the concept of electron orbitals. The Kohn-Sham equations are given 

by 

 
  

! 

"
1
2
#2 + veff (

r r )
$ 

% 
& 

' 

( 
) *i(

r r ) = +i*i(
r r )                  (42) 

where 

! 

veff  is the Kohn-Sham potential, 

! 

"i is a Kohn-Sham orbital, and 

! 

"i is the orbital 

energy. As with the Hartree-Fock approach, the Kohn-Sham wavefunction is a single Slater 

determinant of the orbitals that are the lowest energy solutions to Eq. (42). An electron 

density 

! 

" = #i
i
$

2
 can be calculated from the set of Kohn-Sham orbitals, from which the 

energy can then be determined. The energy functional E is given by  

 
  

! 

E "[ ] = TS "[ ] + d
r 
r # $ vext (

r 
r )"(r r ) + VH "[ ] + EXC "[ ]               (43) 

where TS is the Kohn-Sham kinetic energy functional, vext gives the external potential acting 

on the system (e.g. the electron-nuclear interaction), VH is the Coulomb functional, and EXC is 

the exchange-correlation functional. Equations for the kinetic energy and Coulomb 

functionals are given by 

 
  

! 

TS "[ ] = dr r #i
*(r r )$

i=1

N

% &
1
2
'2( 

) 
* 

+ 

, 
- #i(

r r )                  (44) 

and 

 
  

! 

VH =
1
2

d
r 
r " d

r 
# r " $(r r )$(r # r )

r 
r %

r 
# r 

                  (45) 

However, the formula for the exchange-correlation functional is not known, except in the 

case of a free electron gas. 

 An exchange-correlation functional is often produced through at least semi-empirical 

means. Many different functionals exist; most involve fitted parameters. Approaches to 

constructing functionals can be divided into four classes: the local density approximation 

(LDA), the local spin-density approximation (LSDA), the generalized gradient 
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approximation (GGA), and the meta-GGA. With LDA, the simplest type, the exchange-

correlation energy is approximated as a function of the electron density at the coordinate 

where the functional is evaluated. LSDA extends LDA to include electron spin as a 

contributing factor. GGA takes into account the gradient of the electron density in addition to 

the value of the density itself. Meta-GGA methods, the most computationally costly, include 

a dependence on the second derivative of the density as well. Some functionals, called hybrid 

functionals, use all or a portion of the Hartree-Fock exchange with additional exchange and 

correlation energy included by one of the four methods listed above. 

DFT can be as computationally inexpensive as Hartree-Fock while mirroring the 

accuracy of MP2, at least in systems similar to those with which the fitted parameters were 

determined. However, it can be worse than Hartree-Fock if an improper functional is chosen 

or if a good functional does not exist for the chemical system of interest. Different DFT 

functionals may provide different results for calculations on the same system, as can be seen 

in the aluminum cluster study in Chapter 2. 

 

Modeling intermolecular interactions 

  Intermolecular interactions are significantly weaker than the chemical bond, and are 

correspondingly difficult to capture. While chemical bonds are on the order of one hundred 

kilocalories per mole, minima on the intermolecular potential energy surface may reach 

depths from mere tenths or hundredths of a kilocalorie per mole to several kilocalories per 

mole. Due to this energy discrepancy, most of the common methods used for electronic 

structure calculations do not perform well at describing intermolecular interactions. Standard 

electronic structure methods are used with the supermolecular approach, in which interaction 

energy is computed by subtracting the individual monomers’ energies from the energy of the 

combined system: 

 

! 

E int = EAB " (EA + EB )                                (46) 

This approach is problematic due to basis set superposition error28-30 (BSSE). An infinite 

basis set can clearly never be achieved, but using a finite basis set means that a greater total 

number of basis functions is available to each monomer when a calculation is performed on a 

dimer system than when a calculation is performed on each monomer separately. A monomer 
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“borrows” from the basis set of another monomer if it is close enough to interact. This results 

in an artificial lowering of the energy of the dimer system relative to that of the individual 

monomers. While various methods exist that attempt to calculate, and hence eliminate, the 

BSSE, there is no consensus on how best to do so. Additionally, without using a very high-

level standard electronic structure method, errors in the total energies may exceed the 

magnitude of the interaction energy itself. The supermolecular approach relies on 

cancellation of  (large) errors, which may not always occur as desired. 

In addition to the problems associated with obtaining an accurate intermolecular 

interaction energy with the supermolecular approach, that approach does not offer desired 

physical insight into the nature of the interaction. Intermolecular interactions are typically 

divided into four fundamental contributions: Coulomb (electrostatic), induction 

(polarization), dispersion, and exchange-repulsion. The Coulomb term results from 

interactions between the permanent electric multipole moments on different monomers. 

Induction arises from interactions between permanent electric multipole moments on one 

monomer and induced multipole moments on the other. The dispersion energy results from 

interactions between instantaneous electric multipoles. Exchange refers to the interchanging 

of electrons between monomers due to tunneling. The strongest of these interactions is often 

the Coulomb term – for example, in hydrogen bonded systems. However, there are also 

chemical systems stabilized primarily by the dispersion interaction (a focus of most of this 

dissertation). A fifth contribution to intermolecular interactions, important in systems with 

charged or highly polar species, is charge transfer, which arises from the interaction between 

occupied orbitals on one molecule and virtual orbitals on another. 

Given the difference in magnitude between the energies of monomers and the 

energies of intermonomer interactions, it is intuitive to treat the relatively small 

intermonomer interaction with perturbation theory. The perturbative Hamiltonian   

! 

) 
H  can be 

constructed as in Eq. (26)  

   

! 

) 
H =

) 
H 0 + "

) 
V  

and the unperturbed Hamiltonian   

! 

) 
H 0  can be partitioned as 

  

! 

) 
H 0 =

) 
H A +

) 
H B                     (47) 
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where   

! 

) 
H A  and   

! 

) 
H B  are the unperturbed electronic Hamiltonians for monomers A and B. The 

perturbation operator   

! 

) 
V  then corresponds to all Coulombic interactions between the electrons 

and nuclei of monomer A on one side and the electrons and nuclei of monomer B on the 

other. Hence, in this context, it is often called the intermolecular interaction operator. When 

the perturbation is turned off (λ = 0), the ground state unperturbed energy is a sum of 

monomer energies 

 

! 

E0
(0) = EAB

(0) = EA + EB                    (48) 

and the corresponding wavefunction is the product of the individual monomer wavefunctions 

 

! 

"0
(0) ="AB

(0) ="A"B                       (49) 

When the perturbation is turned on (λ = 1), the intermolecular interaction terms in   

! 

) 
V  are 

completely included, so the corresponding wavefunction 

! 

"AB  and energy 

! 

EAB  become the 

exact wavefunction and energy of the dimer. Thus, 

! 

"AB  and 

! 

EAB  are more properly 

expressed as functions of the perturbation parameter λ. 

The wavefunction 

! 

"A  is generally given as a function of only the electrons on 

monomer A, and the Hamiltonian   

! 

) 
H A  acts solely on these electrons; likewise for 

! 

"B  and   

! 

) 
H B  

with the electrons on monomer B. The problem with this approach is that, except at long 

distances, electrons can tunnel between monomers. The correct unperturbed wavefunction 

must account for this electron exchange. The antisymmetrization operator   

! 

) 
A  can be applied 

to the unperturbed wavefunction to give correct parity under electron exchange. This 

operator is given by 

  

! 

) 
A = 1

N!
("1)#

) 
P $                    (50) 

where N denotes the number of electrons, the sum goes over all possible instances of   

! 

) 
P , π is 

the number of electron exchanges occurring for each instance of   

! 

) 
P , and   

! 

) 
P  itself is the 

transposition operator.   

! 

) 
P  can be expanded as a sum of permutation operators that exchange 

two, three, four, etc. electrons. The two-electron permutation operator is given by: 

   

! 

) 
P ij"(1,2,...,i,..., j,...,N) ="(1,2,..., j,...,i,...,N)                (51) 

  

! 

) 
A "0

(0)  gives the symmetry-corrected unperturbed zeroth-order wavefunction; 

however, this function is no longer an eigenvalue of the unperturbed Hamiltonian. The 
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perturbation procedure must be modified so that   

! 

) 
A "0

(0)  can be used with the desired, 

physically intuitive construction of the Hamiltonian,   

! 

) 
H 0 =

) 
H A +

) 
H B . These various 

modifications are known as symmetry adaptation, and the resulting procedure as symmetry 

adapted perturbation theory31-33 (SAPT). So far, the most successful symmetry adaptation has 

been in “weak symmetry forcing,” in which the antisymmetrizer is used only to correct the 

energy expressions; otherwise, perturbation theory is carried out on the (unsymmetrized) 

approximate wavefunction 

! 

"0
(0). The corrected (symmetrized) interaction energy expression 

becomes 

  

! 

E int (") =
#0
(0) "

) 
V 

) 
A #AB (")

#0
(0) ) 

A #AB (")
                             (52) 

Eint can be expanded in powers of λ as 

  

! 

E int
(n ) =

"0
(0) ) 

V 
) 
A "AB

(n#1)

"0
(0) ) 

A "0
(0)

# E int
(k ) "0

(0) ) 
A "AB

(n#k )

k=1

n#1

$                (53) 

The n-th order interaction energy is the sum of the n-th order reference energy term and a 

short-range correction that depends on the portion of the antisymmetrizer that exchanges 

electrons between monomers: 

 

! 

E int
(n ) = Eref

(n ) + Eexch
(n )                    (54) 

The energy terms on the right side of Eq. (54) can be decomposed into the familiar 

components of the interaction energy. The Coulomb interaction energy term is identical to 

! 

Eref
(1) . 

! 

Eref
(2) is equivalent to the sum of the induction and dispersion interaction terms. If 

carried out to third order, 

! 

Eref
(3) can be decomposed into an induction term, a dispersion term, 

and an induction-dispersion term resulting from the coupling of the induction and dispersion 

interactions; the third-order induction and dispersion terms may be added to the respective 

second-order terms as corrections. The first-order exchange energy is simply 

! 

Eexch
(1) . Similarly 

to 

! 

Eref
(2), the second-order expression 

! 

Eexch
(2)  can be separated into exchange-induction and 

exchange-dispersion contributions. 

 It is convenient to begin with reference wavefunctions for each monomer computed 

via Hartree-Fock, which will then need to be corrected for electron correlation within 
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monomers while being used to compute intermolecular interactions. In this case, two 

perturbation operators are used simultaneously: 

! 

W =WA +WB  accounts for intramonomer 

correlation (within monomers A and B), while 

! 

V accounts for intermonomer interactions (as 

shown previously). The double perturbation expression, beginning with a Hartree-Fock 

wavefunction 

! 

"AB (0,0) ="0
HF , is 

   

! 

(
) 
F + "

) 
W + #

) 
V )$AB (" ,#) = EAB (" ,#)$AB (" ,#)               (55) 

where   

! 

) 
F =

) 
F A +

) 
F B  is the sum of the Fock operators for monomers A and B, and ζ and λ are 

equal to 1 when the perturbations are “on.” As with the single perturbation expression shown 

previously, the energy and wavefunction of Eq. (55) can be expanded in powers of ζ and λ; 

grouping by like powers produces expressions for each order of the perturbation theory. For 

the energy, this yields doubly-ordered terms resembling 

! 

E (nl ), where n and l denote the order 

of the perturbation in V and W, respectively. A list of the significant energy terms is given 

below33,34. 

 

! 

Eelst
(10)  Coulomb (electrostatic) energy 

! 

Eelsr
(1l ),l = 2,3,4  intramonomer correlation corrections to Coulomb energy 

! 

Eexch
(10)   exchange-repulsion 

! 

Eexch
(1l ) ,l =1,2 intramonomer correlation corrections to exchange-repulsion 

! 

Eind
(20)  induction energy 

! 

Eind
(22)  intramonomer correlation corrections to the induction energy 

! 

Eexch" ind
(20)  exchange-induction energy 

! 

Edisp
(20)  dispersion energy 

! 

Edisp
(2l ),l =1,2 intramonomer correlation corrections to the dispersion energy 

 

 While SAPT is often the method of choice for calculating intermolecular interactions, 

as an ab initio perturbation method, it is a time-consuming calculation. The effective 

fragment potential35-37 (EFP) method is an ab initio-based method of calculating 

intermolecular interactions that is coded in the GAMESS38 (General Atomic and Molecular 

Electronic Structure System) quantum chemistry software package. The EFP method was 
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originally developed as a discrete solvation method. Discrete solvation methods model all 

solvent molecules explicitly, rather than treating the entire solvent with a single model 

potential. Either the solute and solvent can both be treated with EFP, or the EFP method can 

be made to interface with an ab initio method. The bulk solvent can be modeled 

computationally inexpensively with EFP while the solute is treated with a higher-level 

method; interactions between the solute and the EFP solvent molecules are treated as 

perturbations to the solute Hamiltonian. EFP1 exclusively models solvation with water, 

having fitted parameters to model the exchange-repulsion. EFP2, the general EFP method, 

can be used to model any type of monomer and has no fitted parameters. EFP2 will be the 

focus of the remainder of this section. 

 An EFP2 calculation is run in two parts. First, the necessary parameters are generated 

in a calculation called MAKEFP in GAMESS. This step needs to be performed only once for 

each type of monomer. (It can be bypassed if the parameters are already available in an EFP 

library.) Once the parameters that describe the effective fragment have been calculated, they 

can be used again and again in a RUNEFP calculation. 

 The EFP method computes Coulomb, induction (polarization), dispersion, and 

exchange-repulsion terms. The Coulomb potential at a point   

! 

r r 2can be expressed in terms of 

multipoles centered around a point   

! 

r r 1  via the expression  

 
  

! 

Vr 
r 1
Coul (v r 2) =

q
r 
r 1

r 
r 12

+ µ"

r 
r 1F" (

r 
r 12)

"

x,y,z

# +
1
3

$"%

r 
r 1 F"% (

r 
r 12)

" ,%

x,y,z

# &
1
15

'"%(

r 
r 1 F"%( (

r 
r 12)

",% ,(

x,y,z

# + ...           (56) 

where q, µ, Θ, and Ω are the charge, dipole, quadrupole, and octopole, respectively, and Fα, 

Fαβ, and Fαβγ are the electric field, field gradient, and field second derivatives. The expression 

in Eq. (56) converges to the exact Coulomb potential when an infinite number of terms are 

included. Because the expression converges slowly, distributed multipole analysis34 (DMA), 

in which many points are used as centers of the multipole expansion, is preferable. Thus, Eq. 

(56) is expanded in a series in   

! 

r r 12
"1  to obtain the DMA Coulomb energy expression 

! 

Eij
Coul = q j Tqi "T#µ#

i +
1
3
T#$%#$

i "
1
15
T#$&'#$&

i( 

) * 
+ 

, - 
 

 

! 

+µ"
j T"q

i #T"$µ$
i +

1
3
T"$%&$%

i #
1
15
T"$%'($%'

i) 

* + 
, 

- . 
               (57) 
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! 

+"#$
B T#$q

A %T#$&µ&
A +

1
3
T#$&'"&'

A % ...
( 

) * 
+ 

, - 
+ ... 

for the interaction between two EFP2 monomers. In Eq. (56), the sums over the directional 

components (given by Greek letters) are implicit. The Coulomb interaction between each pair 

of expansion points (i on monomer A and j on monomer B) is computed as the interaction 

between the pairs of multipoles, up to octopoles. (The EFP2 Coulomb calculation is 

truncated at octopole interactions.) The quantities T, Tα, Tαβ, etc. are electrostatic tensors of the 

zeroth-, first-, second-, etc. order. The first three tensors are given by 

 

! 

T =
1
R

                     (58) 

 

! 

T" =#"

1
R

= $
R"
R3

                   (59) 

 

! 

T"# =
3R"R# $ R

2%"#
R5

                   (60) 

The terms in Eq. (57) can be grouped and expressed as 

 

! 

Eij
Coul = Eij

ch"ch + Eij
ch"dip + Eij

ch"quad + Eij
ch"oct + Eij

dip"dip + Eij
dip"quad + ...+ Eij

oct"oct           (61) 

In EFP2, atom centers and bond midpoints (points with high electron density) are 

used as the multipole expansion points. The charge, dipole, quadrupole, and octopole terms 

for each EFP2 monomer type need only be calculated once, in a MAKEFP calculation. 

Interactions between each nucleus I and the multipoles centered at j are also 

computed and summed: 

 

! 

EIj
Coul = EIj

nuc"ch + EIj
nuc"dip + EIj

nuc"quad + EIj
nuc"oct                 (62) 

The Coulomb interaction between nucleus I and nucleus J has the classical form 

 

! 

EIJ
Coul =

ZIZJ

RIJ

                    (63) 

where ZI is the nuclear charge. The total EFP2 Coulomb energy term between monomers A 

and B includes all of these interactions: 

 

! 

ECoul =
1
2

Eij
Coul + EIJ

Coul + EIj
Coul

j"B
#

I "A
#

J"B
#

I "A
#

j"B
#

i"A
#
$ 

% 
& & 

' 

( 
) ) 

B*A
#

A
#               (64) 
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 The Coulomb interaction between an EFP2 monomer and an ab initio monomer is 

given as a perturbation to the ab initio Hamiltonian, as in Eq. (26). The perturbation operator 

  

! 

) 
V  consists of contributions from all multipole expansion points and from all nuclei on all of 

the EFP2 monomers. 

 
  

! 

) 
V = Dpq m Vi

Coul n + m ZI

R
n

I "A
#

i"A
#
$ 

% 
& 

' 

( 
) 

A
#

n
#

m
#                (65) 

Here, A is an EFP2 monomer, I is a nucleus, m and n are atomic orbitals on the ab initio 

monomer, ZI is the nuclear charge, Dpq is an element of the density matrix, and 

! 

Vi
Coul  gives 

the Coulomb potential at an expansion point. The integral with 

! 

Vi
Coul  looks like 

 

! 

mVi
Coul n = m qi

R
n + m

µ"
i"

"

x,y,z
#

R3
n + m

$"%
i 3"% & R2'"%( )

"%

x,y,z
#

3R5
n       

         

! 

+ m
"#$%

i 5#$% & R2(#'$% + $'#% + %'#$ )( )
#$%

x,y,z
(

5R7
n              (66) 

where R, α, β, and γ are the distance and the components of the distance between the electron 

and the expansion point i and δαβ is the Kronecker delta. 

  The EFP2 Coulomb interaction model described above performs well at large 

intermonomer separations, but performs more poorly when the electron densities of the 

monomers overlap. This overlap is known as charge penetration. Charge penetration in EFP2 

is modeled by multiplying the charge-charge interaction term by a screening function.39 
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            (67) 

Screening may be applied to higher multipole interaction terms as well. The parameters α in 

the screening function are calculated to minimize the differences between the screened EFP2 

electrostatic potential and the ab initio electrostatic potential for the same monomer, which is 

constructed during a MAKEFP calculation. 

 The quantum mechanical formula for induction (polarization), which describes a 

molecule’s charge redistribution in the presence of an external electric field, is part of a 
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second-order term appearing in long-range perturbation theory. The equation for the 

induction energy of monomer B resulting from monomer A is 

 

! 

E ind ;B = "
00VCoul 0n " 0n VCoul 00

En
B " E0

B
n#0
$                 (68) 

This is a sum-over-states formula in which n represents an excited electronic state and 0 

represents the ground state, 

! 

mn  refers to a state m on monomer A and a state n on monomer 

B, and En is the energy of state n. Using the multipole expansion of Eq. (57) for the 

perturbation operator in Eq. (67) and simplifying, 

 

! 

E ind ;B = " qiTa "µb
i Tab + ...( ) 0 µa

j n n µ # a 
j 0

En
B " Eo

B
n$0
% qiT # a "µ # b 

i T # a # b + ...( )
j&B
%

i&A
%                (69) 

The expression in Eq. (69) omits the quadrupole and higher terms because EFP2 uses only 

the lower-order terms for computational efficiency. The distributed approach allows 

reasonable accuracy to be retained even when the higher-order multipoles are neglected, 

because of the use of localized molecular orbitals (LMOs). Labeling the summation in the 

center of Eq. (69) as a polarizability 

! 

"a # a  and noting that 

! 

qiTa "µb
i Tab + ...( ) corresponds to 

minus the electric field at j due to i, the final induction energy expression is 

 

! 

E ind ;B = " Fa
i( j)F # a 

i ( j)$a # a 
j

j%B
&

i%A
&                             (70) 

Induced dipoles are calculated at each polarizability point (in EFP2, these correspond 

to bonds and lone pairs) using the expression 

 

! 

µi =" iFi                    (71) 

where the terms µi, αi, and Fi give the induced dipole, the polarizability tensor, and the 

external field at point i. (While the polarizability tensor for the entire molecule is symmetric, 

the distributed polarizability tensors are asymmetric, so all nine components are needed.) The 

induced dipoles are used to calculate the induction energy 

 

! 

E ind = µiFi
i
"                                (72) 

The field itself is dependent on the permanent multipoles, induced dipoles, and nuclei of 

other EFP2 monomers; in the case of a mixed ab initio-EFP2 system, it depends on the 

electron density and nuclei of the ab initio molecule as well. The induced dipoles are affected 
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by the field created by other induced dipoles or by the ab initio electron density, which is in 

turn affected by the field created by the induced dipoles through a one-electron contribution 

to the Hamiltonian 

 

! 

Hind =
(µi,a + µ i,a )a

R3a

x,y,z

"
i#A
"

A
"                   (73) 

R gives the distance between the electron and the polarizability point i, a gives the distance 

components, 

! 

µi,a  denotes the ath distance component of the induced dipole at location i, and 

! 

µ i,a  is the conjugated induced dipole, which is computed with 

 

! 

µ i =" i
T Fi                                                     (74) 

where 

! 

" i
T  is the transpose of the polarizability tensor. Because of these intertwined 

dependencies, the induced dipoles must be computed self-consistently. If the entire system is 

modeled with EFP2, only the induced dipoles and external fields must be made self-

consistent; in a mixed ab initio-EFP2 system, the ab initio wavefunction must be consistent 

with the induced dipoles and fields as well. 

 The polarization parameters determined in a MAKEFP calculation are polarizability 

tensors and LMOs. LMOs are obtained from the ab initio electron density using the Boys40 

localization method. Polarizability tensors are obtained by a finite difference method based 

on the relation 

 

! 

"ab =
#µa

#Fb
                                          (75) 

First, a dipole moment is computed for each LMO in the absence of an electric field. Then, in 

three additional calculations, the dipole moments are computed in the presence of a small 

electric field acting along each coordinate axis. Finally, the polarizability tensor is computed 

as 

 

! 

"ab =
µa (Fb ) #µa (0)

Fb
                   (76) 

 Along with the induction term, the quantum mechanical expression for the dispersion 

energy appears as part of a second-order term in long-range perturbation theory. The sum-

over-states expression for the dispersion energy between interacting molecules A and B is 

given by 
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! 

E disp = "
00VCoul mn mn VCoul 00
Em

A + En
B " E0

A " E0
B

m#0
$

n#0
$                 (77) 

where 0 is the ground state and m and n are excited states with corresponding energies E0, 

Em, and En. When the multipole expansion is used, Eq. (76) can be expressed in the form 

 

! 

E disp =
C6

R6
+
C8

R8
+
C10
R10

+ ...                                        (78) 

The coefficients Cn arise from the induced dipole-induced dipole interactions (C6), induced 

dipole-induced quadrupole interactions (C8), induced quadrupole-induced quadrupole and 

induced dipole-induced octopole interactions (C10), and so on. The dispersion term is 

computed using a distributed model with expansion points at the LMO centroids. 

 The induced dipole-induced dipole interaction energy between dispersion points 

(LMOs) i and j can be expressed as41,42 

 

! 

Eij = TabTcd
abcd

x,y,z

" #ac
i (i$ )#bd

j (i$)d$
0

%

&                  (79) 

where a, b, c, and d give directional components, 

! 

"ac
i  and 

! 

"bd
j  are the dynamic polarizability 

tensors associated with each LMO, and the integral goes over the imaginary frequency range 

(iν). This integral over frequency produces the C6 coefficient in Eq. (78). 

! 

Tab  and 

! 

Tcd  are 

quadrupole tensors, given by Eq. (60). Details about the calculation of Eq. (79) can be found 

in Chapter 6. 

 In the expression for the total EFP2 dispersion energy, only the first term in Eq. (78) 

is calculated explicitly. It has been shown that the remainder of the series can be fairly well 

approximated as 1/3 of the 

! 

C6

R6
 value. Hence, the final expression becomes 

 

! 

E disp =
4
3

C6
ij

R6j"B
#

i"A
#

B
#

A
#                              (80) 

Damping of the EFP2 dispersion coefficients is performed to account for charge 

penetration. In the original formulation of EFP2, a Tang-Toennies43,44 damping function was 

used. However, this function may overdamp the dispersion energy; a new damping function, 

dependent on the electronic density overlap matrix elements Sij between LMOs i and j, is 

now preferred. This damping function is given by45 
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! 

C6
ij " 1# Sij

2
1# 2ln Sij + 2ln2 Sij( )( )C6

ij                            (81) 

 The dispersion interaction between an EFP2 monomer and an ab initio molecule has 

not been implemented. Progress toward this goal is described in Chapter 6. 

 The dispersion parameters found in a MAKEFP calculation include the locations of 

the LMO centroids and values of the dynamic polarizability tensors for each LMO. The 

dynamic polarizability tensors are computed using the dynamic analog of the coupled 

perturbed Hartree-Fock equations46. 

 The exchange-repulsion term47,48 is the most computationally expensive EFP2 energy 

term discussed so far. As noted in the discussion of symmetry adapted perturbation theory 

(SAPT), exchange-repulsion results from the short-range overlap of individual molecular 

wavefunctions, where tunneling permits the interchange of electrons between molecules. As 

such, it is an entirely quantum mechanical effect. The full expression for the exchange-

repulsion energy found with perturbation theory is given by 

 
  

! 

E exch =
"A"B

) 
A 

) 
H AB "A"B

"A"B

) 
A "A"B

# "A"A

) 
V "B"B # EA # EB               (82) 

where A and B denote the two (separated) molecules described by wavefunctions 

! 

"A  and 

! 

"B  

with energies EA and EB,   

! 

) 
H AB =

) 
H A +

) 
H B +

) 
V  is the unperturbed Hamiltonian, and   

! 

) 
V  is the 

perturbation operator, which captures the total Coulomb interaction between the molecules. 

The antisymmetrization operator   

! 

) 
A  is given in Eq. (50). Applying an infinite basis set 

approximation and a spherical gaussian overlap approximation49, an expression for the 

exchange-repulsion in terms of LMOs is obtained: 
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Here, A and B are the EFP2 monomers, i, j, k, and l are LMOs, I and J are nuclei, S is the the 

matrix of intermolecular overlap integrals, T is the matrix of kinetic energy integrals, and F is 

the Fock matrix. 
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 While the EFP2 exchange-repulsion term is more expensive to compute than the 

EFP2 Coulomb, induction, or dispersion terms, it describes a short-range effect only. A 

proximity-based screening can determine for which pairs of EFP2 monomers it is necessary 

to compute this term. By eliminating the need to calculate the exchange-repulsion for every 

pair of EFP2 monomers, finding the total exchange-repulsion in a system of many monomers 

may be less computationally expensive than calculating the long-range terms, such as the 

total Coulomb interaction. 

 A final term, the charge-transfer interaction, exists in the EFP method. This 

interaction involves the promotion of electrons from the occupied orbitals on one molecule to 

the virtual orbitals on another. This term is very time-consuming to compute and only makes 

a significant contribution to the total interaction energy in systems of charged or highly polar 

molecules, such as water. For this reason, charge-transfer was not used in any of the work 

presented here. An overview of charge-transfer in EFP can be found in ref. 50. 

 The EFP2 method is the basis of most of this work. Chapters 3-5 are studies in which 

the EFP2 method is applied to dimer complexes that are normally difficult to model without 

resorting to computationally expensive, high-level calculations. Whenever possible in these 

chapters, EFP2 energy components are compared with SAPT values, because SAPT is a 

well-regarded method for determining the various contributions to the total interaction 

energy. Chapter 6 presents efforts toward extending the utility of the EFP2 method by 

implementing a dispersion energy term in mixed ab initio-EFP2 systems. 

 

Exploring the potential energy surface 

 The potential energy for a chemical system is a function of a huge number of 

variables – 3N, where N is the number of particles of interest. These variables give the 

coordinates of each particle. For all but the simplest chemical systems, the number of degrees 

of freedom is too large to make an exhaustive enumeration feasible. Therefore, methods have 

been developed to sample the potential energy surface (PES) in search of interesting features. 

The most commonly sought point on the PES is the global minimum, but local minima and 

saddle points (especially first-order saddle points, which are transition states) are of interest 

as well. For example, these states may be intermediates in a chemical reaction. 
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 This section focuses on Monte Carlo51/simulated annealing52,53 (MC/SA), which 

repeatedly and randomly samples the PES. Random sampling methods are in contrast to 

optimization methods, which commonly use “greedy” algorithms. Greedy algorithms set a 

course along the PES determined by making the locally optimal choice at each step. Given a 

starting location on a PES, a greedy algorithm would, for example, compute the energy and 

gradient at that point and follow the trajectory of steepest descent to a lower energy. After 

following this trajectory a set distance, it computes the gradient at the new point and again 

travel along the steepest descent. This process continues until a minimum is reached. While 

this method does produce a sampling of the PES, it is possible for a greedy algorithm to 

become stuck in a local minimum that is higher in energy than the global minimum. 

Additionally, if a broader sampling of the PES is desired, the steeepest descent trajectory 

may be limiting. 

 MC/SA uses pseudo-random number generation (the “Monte Carlo” part of the name, 

eponymous with the famous casino) to choose the next move along the PES. Moving 

between states (locations on the PES) is also a function of a variable T, the “temperature.” T 

begins at a (high) specified value and decreases in set increments with each iteration until 

reaching its minimum, another specified value. When T is high, the move is more likely to 

occur. The likelihood of moving progressively decreases as T approaches its minimum, at 

which point the program ends. Allowing greater movement in the beginning permits a broad 

sampling of the PES and, ideally, prevents the algorithm from converging on a final state that 

is a local, rather than the global, minimum.  

The use of decreasing “temperature” comes from annealing in metallurgy, where 

defects in metals may be reduced by heating and then cooling them. Directly analogously 

with PES sampling in MC/SA programs designed for chemistry, the annealing of metals 

works by allowing atoms to move from their initial positions at sites of defects (local 

minima) to a lower energy state (ideally, the defect-free global minimum). Simulated 

annealing algorithms are not, however, limited to chemistry-related applications; they can be 

implemented to obtain good approximate solutions to many problems that have a large set of 

possible outcomes. 
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The disadvantage of MC/SA is that, due to its random sampling, many repetitions of 

the program may be needed to find the global minimum. However, the speed and simplicity 

of the MC/SA approach often make it feasible to conduct a large number of trials, especially 

when MC/SA is used with a fast method like EFP2 to compute the energy of each sampled 

geometry. Since the number of possible configurations decreases with system size, it is more 

likely that MC/SA will converge on the global minimum when small systems are examined. 

EFP2-MC/SA investigations of dimer potential energy surfaces appear in Chapters 3 and 4. 

 

References 

1) Schrödinger, E. Ann. Physik. 1926, 79, 361. 
2) Schrödinger, E. Ann. Physik. 1926, 79, 489. 
3) Schrödinger, E. Ann. Physik. 1926, 79, 734. 
4) Schrödinger, E. Ann. Physik. 1926, 80, 437. 
5) Schrödinger, E. Ann. Physik. 1926, 81, 109. 
6) Born, M.; Oppenheimer, R. Ann. Physik. 1927, 84, 457. 
7) Hartree, D. R. Proc. Cambridge Phil. Soc., 1928, 24, 89. 
8) Hartree, D. R. Proc. Cambridge Phil. Soc., 1928, 24, 111. 
9) Hartree, D. R. Proc. Cambridge Phil. Soc., 1928, 24, 426. 
10) Fock, V. Physik 1930, 61, 126. 
11) Roothan, C. C. J. Rev. Mod. Phys., 1960, 32, 179. 
12) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46,  618. 
13) Grimme, S. J. Chem. Phys. 2003, 118, 9095. 
14) Grimme S., J. Comput. Chem. 2003, 24, 1529. 
15) Gerenkamp, M.; Grimme, S. Chem. Phys. Lett. 2004, 392, 229. 
16) Feyereisen, M.; Fitzgerald, G.; Komornicki, A. Chem. Phys. Lett. 1993, 208, 359. 
17) Bernholdt, D. E.; Harrison, R. J. Chem. Phys. Lett. 1996, 250, 477. 
18) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett.  
      1989, 157, 479. 
19) Paldus, J. NATO ASI Series, Series B: Physics 1992, 293, 99. 
20) Bartlett, R. J. Advanced Series in Physical Chemistry 1995, 2, 1047. 
21) Lee, T. J.; Scuseria, G. E. Understanding Chemical Reactivity 1995, 13, 47. 
22) Gordon, M. S. Personal correspondence. 
23) Piecuch, P.; Kucharski, S. A.; Kowalski, K.; Musial, M. Comput. Phys. Commun.  
      2000, 149, 71. 
24) Shavitt, I.  The Method of Configuration Interaction. Methods of Electronic Structure  
      Theory; Schaefer, H. F., Ed.;  Plenum Press: New York, 1977, p. 189-275. 
25) Sherrill, C.D.; Shaefer III, H. F. Adv. Quant. Chem., 1999, 34,  143. 
26) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. 
27) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. 
28) Jansen, H. B.; Ros, P. Chem. Phys. Lett. 1969, 3, 140. 
29) Liu, B.; McLean, A. D. J. Chem. Phys. 1973, 59, 4557. 
30) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. 



www.manaraa.com

 29 

31) Jeziorski, B.; Kolos, W. In Molecular Interactions; Ratajczak, H; Orville-Thomas, W.  
      J., Eds.; Wiley: New York, 1982; Vol. 3, p. 1. 
32) Rybak, S.; Jeziorski, B.; Szalewicz, K. J. Chem. Phys. 1991, 95, 6576. 
33) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94, 1887. 
34) Stone, A. J. The Theory of Intermolecular Forces; Oxford University Press: New  
      York/Oxford, 1996. 
35) Day, P. N.; Jensen, J. H.; Gordon, M. S.; Webb, S. P.; Stevens, W. J.; Krauss, M.;  
      Garmer, D.; Basch, H.; Cohen, D. J. Chem. Phys. 1996, 105, 1968. 
36) Chen, W.; Gordon, M. S. J. Chem. Phys. 1996, 105, 11081. 
37) Gordon, M. S.; Freitag, M. A.; Bandyopadhyay, P.; Jensen, J. H.; Kairys, V. J. Phys.  
      Chem. A, 2001, 105, 293. 
38) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen,  
      J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis,  
     M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.  
39) Slipchenko, L. V.; Gordon, M. S. J. Comput. Chem. 2007, 28, 276. 
40) Boys, S. F. Rev. Mod. Phys. 1960, 32, 306. 
41) Adamovic, I.; Gordon, M. S. Mol. Phys. 2005, 103, 379. 
42) Amos, R. D.; Handy, N. C.; Knowles, P. J.; Rice, J. E.; Stone, A. J. J. Phys. Chem.  
      1985, 89, 2186. 
43) Tang, K. T.; Toennies, J. P. J. Chem. Phys. 1977, 66, 1496. 
44) Tang, K. T.; Toennies, J. P. J. Chem. Phys. 1984, 80, 3726. 
45) Slipchenko, L. V.; Gordon, M. S. Mol. Phys. 2009, 107, 999. 
46) Yamaguchi, Y.; Goddard, J. D.; Osamura, Y.; Schaefer, H. F. A New Dimension in  
      Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic  
      Structure Theory; Oxford University Press: New York/Oxford, 1994. 
47) Jensen, J. H.; Gordon, M. S. Mol. Phys. 1996, 89, 1313. 
48) Kemp, D. D.; Rintelman, J. M.; Gordon, M. S.; Jensen, J. H. Theor, Chem. Acc. 2010,  
      125, 481. 
49) Jensen, J. H. J. Chem. Phys. 1996, 104, 7795. 
50) Li, H.; Gordon, M. S.; Jensen, J. H. J. Chem. Phys. 2006, 124, 214108. 
51) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J.  
      Chem. Phys. 1953, 21, 1087. 
52) Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Science, 1983, 220, 671. 
53) Cerny, V. J. Optimization Theory and Appl. 1985, 45, 41. 
 

 



www.manaraa.com

 30 

CHAPTER 2. THE ELECTRON AFFINITY OF Al13: A CORRELATED 

ELECTRONIC STRUCTURE STUDY 
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Abstract 
 
 
Neutral and anionic 13-atom aluminum clusters are studied with high-level, fully ab initio 

methods: second-order perturbation theory (MP2) and coupled cluster theory with singles, 

doubles, and perturbative triples (CCSD(T)). Energies and vibrational frequencies are 

reported for icosahedral and decahedral isomers, and are compared with density functional 

theory results. At the MP2 level of theory, with all of the basis sets employed, the icosahedral 

structure is energetically favored over the decahedral structure for both the neutral and 

anionic Al13 clusters. Hessian calculations imply that only the icosahedral structures are 

potential energy minima. The CCSD(T)/aug-cc-pVTZ adiabatic electron affinity of Al13 is 

found to be 3.57 eV, in excellent agreement with experiment. 

 

Introduction 

 

Al13
!  is a remarkably stable closed-shell cluster that has been referred to as a 

“superhalogen”1. Therefore, Al13
!  is of potential interest as an anion in ionic liquids. 

Experimental studies suggest that Al13
!  is highly symmetric2 and cannot be etched by 

oxygen3. These properties are in agreement with its description as a “magic cluster” 

according to the jellium model4, in which the nuclear geometry of the cluster is approximated 

as a spherical charge distribution interacting with delocalized valence electrons. This model 

predicts that 2, 8, 20, 40, etc. valence electrons will correspond to stable, closed-shell 

clusters. Al13
!  has 40 valence electrons. 
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The structure of Al13- is widely accepted to be icosahedral1,5, having two five-atom 

“rings” that are staggered with respect to one another.  For the neutral Al13 cluster, previous 

density functional theory (DFT) studies6-8 have predicted two possible isomers: a distorted 

icosahedron and a distorted decahedron (Figures 2.1-2.2). In the decahedral structure, the two 

five-atom “rings” are aligned. A study6 using the BPW91 functional9 and the LANL2DZ 

basis set with the Hay-Wadt relativistic effective core potential10 predicts the neutral Al13 

decahedron to be energetically preferred over the icosahedron by 0.43 eV. A study7 using the 

hybrid B3LYP functional11 with the same LANL2DZ likewise finds the neutral decahedron 

to be 0.41 eV lower in energy than the icosahedron. However, the energy ordering reverses 

when an all-electron calculation is performed8: the icosahedron is 0.23 eV lower in energy at 

the BPW91/6-311G(d) level of theory. The authors describe the isomers as nearly degenerate 

within the accuracy of the calculations6,8.  

 
Figure 2.1. Side and top views of (a) the icosahedral and (b) the decahedral geometries of the 
13-atom aluminum cluster. The anion takes on perfect (non-distorted) geometries while the 
neutral cluster geometries are Jahn-Teller distorted. 
 

Using the local spin density approximation with the VWN functional12, Mananes et 

al13 conclude that the neutral Al13 cluster takes on a distorted icosahedral D3d geometry. Han, 
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Jung, and Kim14 show that B3LYP with the aug-cc-pVDZ basis set15 over-distorts the neutral 

Al13 cluster, producing a heavily distorted Cs structure as the ground state. This B3LYP/aug-

cc-pVDZ structure does not resemble either an icosahedron or a decahedron. At this level of 

theory, the D3d geometry is 0.111 eV higher in energy than the Cs structure.14 The hybrid 

PBE functional16 with the aug-cc-pVDZ basis set, however, predicts a D3d ground state, with 

the Cs structure 0.258 eV higher in energy.17  

 
Figure 2.2. Bond (a) lengths and (b) angles of the Jahn-Teller distorted icosahedral structure 
of neutral Al13. In (a), A=2.901 Å, B=2.772 Å, C=2.659 Å, D=2.971 Å, E=2.734 Å, F=2.764 
Å. In (b), representative angles α=60.0°, β=57.6°, γ=63.2°. For the perfect icosahedral anion, 
all bond lengths to interior atom are 2.685 Å and between exterior atoms are 2.823 Å; all 
angles are 60.0°. Bond lengths and angles determined with MP2/6-311+G(2d). 
 

Other studies describe the decahedral and icosahedral neutral isomers as competing 

structures due to their small energy difference.18 A Car-Parrinello study19 finds a single, well-

defined, slightly distorted icosahedral minimum energy structure for Al13, while a model 

potential basin-hopping Monte Carlo simulation20 finds the point group of Al13 to be Ih. A 

study21 utilizing a genetic algorithm coupled with a tight-binding potential, whose low-

energy structure candidates were further optimized with local density approximation DFT, 

finds an icosahedral ground state for Al13. In this study, the decahedral structure is 0.48 eV 

higher in energy, and the heavily distorted Cs structure discussed previously (found as the 

ground state with B3LYP/aug-cc-pVDZ in Ref. 14) lies about 0.02 eV higher still.20 
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Al13- has been the subject of a coupled cluster study21, in which the singles + doubles 

+ non-iterative pertubative triples, CCSD(T)22, method was employed. CCSD(T) single point 

energy calculations, using the 6-311G(d)23 basis, were performed on the icosahedral and 

decahedral isomers of Al13- after optimization with the Hartree-Fock (HF)/3-21G(d) method. 

At the CCSD(T)/6-311G(d) level of theory, the icosahedron is 0.54 eV lower in energy than 

the decahedron. Furthermore, the authors report that electron propagator24 vertical electron 

detachment energy (VEDE) predictions for the icosahedron are in much closer agreement 

with experimental photoelectron spectra than are the predicted VEDEs for the decahedron.21  

Distortion from the perfect icosahedral and perfect decahedral structures in the 

neutral isomers has been attributed to the Jahn-Teller effect.6,8 However, a thorough 

molecular orbital investigation of this phenomenon has not been presented, to the authors’ 

knowledge.  

Explicit mention of vibrational frequencies or the outcome of Hessian (matrix of 

energy second derivatives) calculations for Al13 species is also rare in the literature, with the 

notable exception of Ref. 14 for Al13H. Hessian matrices in particular are important, since a 

positive definite Hessian (all-real vibrational frequencies) indicates that one has found a local 

minimum on the potential energy surface. On the other hand, one or more negative Hessian 

eigenvalues (imaginary frequencies) indicate that the found structure is a saddle point. A 

single imaginary frequency suggests a transition state. Most of the works cited in the 

previous paragraphs do not provide such information. 

Examining the adiabatic electron affinity of Al13 gives insight into the importance of 

geometric relaxation upon electron attachment, as well as an assessment of the accuracy of 

the geometry optimizations. The vertical electron affinity (VEA) is the energy difference 

between the neutral cluster and the anionic cluster at the geometry of the neutral cluster. On 

the other hand, the adiabatic electron affinity (AEA) is the energy difference between the 

neutral and anionic clusters at their respective optimized geometries. So, the AEA includes 

relaxation effects that occur after the electron attachment occurs.  Similar values for the 

vertical and adiabatic electron affinities imply that the neutral and anionic clusters have 

similar geometries. Since experimental results for electron affinities may be available even 

when experimental structures are not, an energy difference between theoretically determined 
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structures that is in good agreement with experimental electron affinity values can imply the 

validity of the theoretical structures. A photoelectron spectroscopy study2 found the adiabatic 

electron affinity of the neutral cluster to be 3.62 ± 0.06 eV. This provides impetus for the 

present computational analysis. In addition, while the structure of the anionic cluster Al13
!  

appears to be well established, there is clearly little consensus on the structure of the neutral 

cluster, or on the relative energies of the two species. Therefore, an accurate determination of 

the structure of Al13 and the related energetics is important. 

 

Methods 

 

Second-order Moller-Plesset perturbation theory (MP2)25 was employed as a means 

of studying the neutral and anionic Al13 clusters with a fully ab initio method that includes 

electron correlation. MP2 geometry optimizations and semi-numerical Hessians (finite 

differencing of analytic gradients) were obtained using three basis sets: LANL2DZ, which 

uses an effective core potential (ECP), and the all-electron Pople bases 6-31+G(d)26 and 6-

311+G(2d).23 Additionally, single-point energy calculations on the MP2/6-311+G(2d) 

optimized icosahedral structures of anionic and neutral Al13 were carried out using coupled 

cluster theory with singles, doubles, and perturbative triples (CCSD(T)22) with the aug-cc-

pVTZ basis15. Theoretical values for the adiabatic ionization potential ofAl13
!  were 

determined by taking the energy difference between the anionic and neutral clusters at their 

respective optimized geometries. 

For comparison, optimizations and semi-numerical Hessian calculations were also 

performed using the same three basis sets with the B3LYP and BPW91density functionals, 

using the geometries of Rao and Jena6 as a starting point.  

The CCSD(T) single-point energies were determined using Molpro27. All other 

calculations were performed with the GAMESS (General Atomic and Molecular Electronic 

Structure Theory) quantum chemistry software package28. 
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Results and Discussion 

 

At the MP2 level of theory, with any of the basis sets examined, the icosahedral 

structure is energetically favored over the decahedral structure for both the neutral and 

anionic Al13 clusters (Tables 2.1-2.2). Additionally, Hessian calculations imply that only the 

icosahedral structures are potential minima, having no imaginary frequencies (Tables 2.3-

2.4).  

 

Table 2.1. Energy difference (in eV) between the decahedral (D5h) and icosahedral (D5d) 
isomers of anionic Al13. A positive value indicates that the icosahedral structure is lower in 
energy than the decahedral structure; a negative value indicates the decahedron is preferred.  

 BPW91 B3LYP MP2 
LANL2DZ -0.12 -0.36 0.50 
6-31+G(d) 0.44 0.17 1.59 
6-311+G(2d) 0.43 0.17 1.40 

 

Table 2.2. Energy difference (in eV) between the distorted decahedral (Cs) and distorted 
icosahedral (D3d) isomers of neutral Al13. A positive value indicates the distorted icosahedral 
structure is lower in energy than the distorted decahedral structure; a negative value indicates 
the distorted decahedron is preferred. 

 BPW91 B3LYP MP2 
LANL2DZ -0.31 -0.53 0.04 
6-31+G(d) 0.26 -0.01 1.02 
6-311+G(2d) 0.26 0.03 0.92 

 

First, consider the relative energies listed in Tables 2.1 and 2.2. MP2 predicts that the 

icosahedral Al13
- structure is lower in energy than the decahedral structure with all basis sets, 

although the LANL2DZ effective core potential (ECP) predicts an energy difference that is 

too small. Indeed, this basis set is inadequate at all levels of theory. Both functionals, BPW91 

and B3LYP, predict the incorrect energy order when the ECP basis set is used. Even with the 

larger, all-electron basis sets, DFT predicts an energy difference that is too small, even 

though the correct energy order is predicted. Similar comments apply to the neutral Al13 

cluster. The ECP basis set predicts energy differences that are too small or the wrong sign, 

and the DFT methods with the all-electron basis sets predict the correct energy order with a 

magnitude that is too small.  
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MP2 consistently predicts that the icosahedral structure is a minimum on both the 

Al13 and Al13
!  potential energy surfaces (Table 2.3). For the anion, MP2 predicts the 

decahedral structure to be a first order saddle point (transition state). The two functionals are 

less definitive, since their prediction regarding the nature of this stationary point depends on 

the basis set that is used. For the largest basis set, all three methods agree that the decahedral 

species is a transition state. For the neutral Al13 radical, the decahedral species is clearly not a 

minimum on the potential energy surface. The number of imaginary frequencies depends on 

both the method and the basis set, and the ECP is clearly unreliable. 

 

Table 2.3. Number of imaginary frequencies found for each isomer of the anionic Al13 
cluster. 

 Icosahedron (D5d)   Decahedron (D5h)   
 BPW91 B3LYP MP2 BPW91 B3LYP MP2 
LANL2DZ 5 5 0 0 2 1 
6-31+G(d) 0 0 0 1 0 N/A 
6-311+G(2d) 0 0 0 1 1 1 

 

Table 2.4. Number of imaginary frequencies found for each isomer of the neutral Al13 
cluster. 

 
Distorted Icosahedron 
(D3d) 

Distorted Decahedron 
(Cs) 

 BPW91 B3LYP MP2 BPW91 B3LYP MP2 
LanL2DZ 4 6 0 0 0 0 
6-31+G(d) 0 2 0 2 1 1 
6-311+G(2d) 0 0 0 2 2 7 

 

The icosahedral anion has perfect Ih symmetry (specified as D5d in practice). At the 

MP2/6-311+G(2d) level of theory, the nearest neighbor bond distances are 2.823 Å between 

the outer twelve atoms and 2.685 Å from the outer atoms to the interior atom. This agrees 

nearly exactly with B3LYP/6-311+G(2d) (2.820 Å exterior, 2.682 Å interior) and very 

closely with BPW91/6-311+G(2d) (2.811 Å exterior, 2.673 Å interior). The decahedral anion 

with D5h symmetry has one imaginary frequency [112i cm-1 with MP2/6-311+G(2d)], 

consisting of a torsional motion that would rotate the aligned pentagonal “rings” to a 

staggered configuration as in the icosahedron (Figure 2.3). As noted above, this suggests the 

decahedral structure is a transition state.  

 The neutral (doublet radical) structure is distorted from its closed shell anionic 
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Figure 2.3. Side and top views of the imaginary frequency mode from the anionic cluster 
constrained to D5h symmetry. This torsional mode suggests the structure will naturally take 
icosahedral symmetry. 
 

analogue. When constrained to the same D5d symmetry as the undistorted icosahedral anion, 

the neutral structure exhibits multiple imaginary frequencies (Table 2.4). Consistent with a 

previously proposed distorted icosahedral D3d structure13, the neutral cluster has a positive 

definite Hessian when relaxed to D3d symmetry. At the MP2 level of theory, this distortion 

from D5d to D3d lowers the energy by 0.2 eV. Decahedral structures for the neutral cluster 

exhibit multiple imaginary frequencies, whether constrained to (undistorted) D5h symmetry 

or relaxed to (distorted) Cs symmetry.  

The MP2/6-311+G(2d) neutral icosahedral bond lengths range from 2.901 Å to 2.734 

Å. The B3LYP/6-311+G(2d) and BPW91/6-311+G(2d) ranges of distances are 2.992 Å to 

2.723 Å and 2.964 Å to 2.663 Å, respectively. Bond lengths as shown in Fig. 2.2 can be 

found in Table 2.5. 

 

Table 2.5. Bond lengths (Å) in distorted icosahedral (D3d) geometry of neutral Al13. Letters 
A-F correspond to bonds shown in Fig. 2.2(a). Calculations performed with 6-311+G(2d) 
basis set. 

 BPW91 B3LYP MP2 
A 2.879 2.898 2.901 
B 2.762 2.763 2.772 
C 2.663 2.677 2.659 
D 2.964 2.992 2.971 
E 2.712 2.723 2.734 
F 2.763 2.780 2.764 
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The distortion in the neutral clusters arises from the Jahn-Teller effect.6,8 This 

requires the unequal occupancy of two (or more) degenerate orbitals. Jahn-Teller distortion 

removes the degeneracy by lowering the symmetry. Orbital diagrams of the anionic (D5d 

icosahedral) and neutral (D3d distorted icosahedral) Al13 clusters appear in Fig. 2.4. The 

highest occupied molecular orbitals (HOMO) of the anion (Fig. 2.4(a)) are doubly degenerate 

orbitals with E1u symmetry. They are isoenergetic with a second doubly degenerate set of 

orbitals having E2u symmetry. Removing an electron from the E1u HOMO to produce neutral 

Al13 yields the unequally occupied degenerate orbitals that lead to Jahn-Teller distortion. The 

distortion of the neutral cluster produces a singly occupied, nondegenerate HOMO with A2u 

symmetry (Fig. 2.4(b)). The Al13 HOMO is nondegenerate A2u even when the neutral cluster 

is constrained to the same (nondistorted) icosahedral geometry as the anion. 

                   
                                   (A)                                                                              (B) 

Figure 2.4. Orbital diagram of (a) anionic and (b) neutral Al13 clusters. Orbital symmetries 
and energies (in hartree) shown for a selection of orbitals near the HOMO-LUMO. The anion 
has perfect icosahedral symmetry (D5d in practice), while the neutral has distorted 
icosahedral symmetry (D3d). 
 

The adiabatic electron affinity of Al13 is the energy difference between the optimized 

neutral and anionic structures (Table 2.6). Relative to the experimental value of 3.62 ± 0.06 

eV, MP2 overestimates the adiabatic electron affinity by about 0.2 eV when either Pople 

basis set is used, but underestimates it by 0.15 eV with the LANL2DZ basis. DFT 

calculations underestimate this value to an extent that is dependent on the functional. With 
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BPW91, the calculated adiabatic electron affinity is about 0.3 eV lower than the experimental 

value. B3LYP yields a more significant deviation, approximately 0.5 eV lower. Single point 

energy calculations using CCSD(T)/aug-cc-pVTZ on the geometries obtained with MP2/6-

311+G(2d) optimizations yields an adiabatic electron affinity of 3.57 eV, in excellent 

agreement with the experimental value. 

 

Table 2.6. Adiabatic electron affinity of Al13. Units of eV. These values are the energy 
difference between the neutral icosahedral (D3d) and anion icosahedral (D5d) structures. 
Experimental value is 3.62 ± 0.06 eV (Ref. 2). 

 BPW91 B3LYP MP2 CCSD(T) 
LanL2DZ 3.28 3.06 3.47   
6-31+G(d) 3.34 3.16 3.83   
6-311+G(2d) 3.33 3.14 3.86 3.57 

 

The MP2/6-311+G(2d) vertical ionization potential (the energy difference between 

the optimized neutral cluster and the cation at the neutral cluster geometry) is 6.93 eV for the 

decahedron and 7.21 eV for the icosahedron. DFT8 with the BPW91/6-311G(d) functional 

predicts a vertical ionization potential for the decahedron to be 6.48 eV and that of the 

icosahedron to be 6.79 eV. An experimental study29 reports the vertical electron affinity to be 

6.45±0.05 eV. So, there is a very large geometry relaxation effect on the observed electron 

affinity. 

 

Conclusions 

 

A small, frozen core basis set like LANL2DZ is inadequate to describe the electronic 

structure of Al13 clusters, especially when used with density functional theory calculations. 

Compared to results found with the larger, all-electron Pople basis 6-311+G(2d), DFT 

calculations with LANL2DZ show a reversal of the energetic ordering of the icosahedral and 

decahedral isomers of both neutral and anionic Al13.  

DFT predictions vary with the choice of functional, notably in the case of the ground 

state neutral Al13 structure. B3LYP with either all-electron basis assigns very nearly equal 

energies to the decahedral and icosahedral geometries (differing by hundredths of an eV), 

while BPW91 favors the icosahedron by 0.26 eV. MP2 predicts that the neutral icosahedron 
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is approximately 1 eV more stable than the decahedron. B3LYP also underestimates the 

energy difference between isomers of the anionic cluster, giving 0.17 eV versus 0.43 eV for 

BPW91/6-311+G(2d) and 1.40 for MP2/6-311+G(2d). However, icosahedral bond lengths 

and angles determined with B3LYP, rather than BPW91, more closely match those 

determined with MP2. Hessian calculations, which can show whether the proposed structure 

is indeed a local minimum on the potential energy surface, are also dependent on the choice 

of functional. 

The Al13 adiabatic electron affinity value of 3.57 eV found via CCSD(T)/aug-cc-

pVTZ single point energy calculations on MP2/6-311+G(2d) geometries is in excellent 

agreement with the experimentally determined value2 of 3.62 ± 0.06 eV.  
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Abstract 

 

This study compares the results of the general effective fragment potential (EFP2) method to 

the results of a previous combined coupled cluster with single, double and perturbative triple 

excitations [CCSD(T)] and symmetry adapted perturbation theory (SAPT) study1 on 

substituent effects in π-π interactions. EFP2 is found to accurately model the binding 

energies of the benzene-benzene, benzene-phenol, benzene-toluene, benzene-fluorobenzene, 

and benzene-benzonitrile dimers as compared with high level methods1, but at a fraction of 

the computational cost of CCSD(T). Additionally, an EFP-based Monte Carlo/simulated 

annealing study was undertaken to examine the potential energy surface of the substituted 

dimers. 

 

Introduction 

 
Intermolecular π-π interactions are among the major noncovalent forces controlling   

structural organization and recognition processes in biomolecules.2  Interactions between 

aromatic rings are largely responsible for DNA base-pair stacking,3 host-guest 

complexation,4-7 and the tertiary structure of proteins.8,9 Certain drugs rely on π-π 

interactions for intercalation into DNA.10,11 While these interactions have been studied 

extensively,12-24 their relative weakness and shallow potential energy surface makes them 

challenging to describe by either experiment or theory.25-29 The binding energy of the gas 
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phase benzene dimer, for example, is 2 - 3 kcal mol-1, and the dimer is stable only at low 

temperatures.30 Only the highest levels of electronic structure theory can accurately capture 

these weak interactions. 

The fundamental nature of π-π interactions, along with the difficulties that theory 

encounters when targeting the multifaceted patterns of intermolecular bonding, has made the 

benzene dimer and its substituents popular benchmark systems for the accuracy and 

feasibility of new computational techniques and approaches.1,30-39 Both experimental18,28,40 

and theoretical30-35 studies suggest that the benzene dimer has two nearly isoenergetic 

geometries: T-shaped and parallel displaced. At the coupled cluster with singles, doubles, 

and perturbative triples [CCSD(T)]41 level in an estimated complete basis set limit, the gas-

phase binding energies De (Do) of these geometries were calculated to be 2.7 (2.4) and 2.8 

(2.7) kcal mol-1, respectively.30 A sandwich geometry (face-to-face stacking) was found to be 

approximately 1 kcal mol-1 higher in energy and is a transition state.30  

 

 
Figure 3.1. Substituted benzene dimer geometries. The geometry referred to as “T-shaped” 
in Ref. 1 has been renamed “T-shaped(1)”.  
 

Adding a substituent (OH, CH3, F, or CN) to one of the benzene rings in the dimer 

can result in interesting changes to the π-π interaction energies.1,37 Sherrill and coworkers 

studied the sandwich geometry and two different T-shaped geometries for several substituted 

benzene dimers (Figure 3.1). An estimated CCSD(T)/aug-cc-pVTZ level of theory predicts 
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that all substituted sandwich dimers have a larger binding energy than the unsubstituted 

benzene dimer. The sandwich configuration exhibits a larger stabilizing effect due to 

substituents than either of the T-shaped configurations does, so the energy difference 

between these configurations is smaller for the substituted dimers than it is for the 

unsubstituted benzene dimer. For the T-shaped(1) structures (referred to as “T-shaped” in ref. 

1), the presence of an electron-withdrawing substituent (F, CN) results in a stronger 

interaction compared to the unsubstituted benzene dimer, while electron-donating 

substituents (OH, CH3) interact more weakly than the unsubstituted dimer does. For the T-

shaped(2) dimers, the opposite is true. It is noteworthy that, as discussed in ref. 1, the binding 

patterns found for the substituted benzene dimers contradict the Hunter-Sanders model42, 

which qualitatively predicts binding energies based on electrostatics alone. This indicates the 

importance of the non-electrostatic terms in determining the binding energies of these 

dimers.  

The same set of substituted benzene dimers was recently studied by using the van der 

Waals density functional theory (vdW-DFT).36  Most DFT methods do not accurately 

describe dispersion interactions, and generalized gradient approximation (GGA) functionals 

often fail to predict any binding in molecular dimers.36  However, the vdW-DFT method43, 

which incorporates a nonlocal correlation energy, has been shown36 to reproduce the 

energetic ordering of the substituents consistent with the CCSD(T) results of ref. 1. But, the 

interaction energies of the sandwich dimers are overestimated by 0.6-0.7 kcal mol-1 

compared to CCSD(T), whereas  the binding in the T-shaped dimers is underestimated by 

0.2-0.4 kcal mol-1. 

In this contribution, the interactions in mixed substituted benzene dimers are studied 

by means of the general effective fragment potential (EFP2) method.44,45 A benchmark study 

is presented, comparing the performance of EFP2 with the CCSD(T) and symmetry adapted 

perturbation theory (SAPT)46 results of Sinnokrot and Sherrill.1 EFP2 is an ab initio-based 

model potential method for treating intermolecular interactions, wherein parameters for all 

major types of non-covalent forces – Coulomb, exchange-repulsion, polarization (induction), 

and dispersion – are obtained for each unique fragment from a single ab initio calculation. 

Contrary to many other model potential methods, EFP2 does not use fitted parameters to 
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reproduce ab initio or experimental results, but rather derives the parameters directly from 

first principles. These parameters can then be used to model interactions with other EFP 

fragments or with fully ab initio molecules. EFP fragments have frozen internal geometries.  

The computational cost of EFP2 is orders of magnitude lower than that of ab initio 

techniques. For example, for the benzene dimer in the 6-311+G(3df,2p) basis set with 660 

basis functions, a single-point energy calculation with second order Moller-Plesset 

perturbation theory (MP2)47 would require 142 minutes of CPU time on one IBM Power5 

processor, whereas the analogous EFP calculation takes only 0.4 seconds48. If EFP2 can be 

shown to produce results of sufficient accuracy, the advantage of using it in place of more 

computationally costly methods, like CCSD(T) or MP2, is clear. 

The effective fragment potential method has been shown to successfully model 

numerous hydrogen bonded systems. For example, EFP1 (the EFP-type model designed 

specifically for water, with a fitted exchange-repulsion term) has been used to model 

chemical reactions in solution,49,50 solvent clusters,51,52 an SN2 reaction,53 and amino acid 

neutral/zwitterion equilibria.54,55 Styrene-styrene interactions56 and methanol-water mixing57 

have been studied by the general EFP2 method. Recently, EFP2 was shown to successfully 

model the π-π interactions in the unsubstituted benzene dimer.48 An EFP2 study of benzene-

water complexes is in progress.58 

The main goal of the present work is to further investigate the performance of EFP2 

for systems with π-π interactions in order to confidently model various biological systems, 

e.g., interactions in DNA base pairs, in future studies. Therefore, the first part of this work 

analyzes the accuracy of EFP2 on a set of mixed benzene-substituted benzene dimers, 

comparing the EFP2 results with those of CCSD(T) and SAPT from ref. 1. The second part 

of this paper undertakes an independent EFP2 study of the dimer potential energy surfaces 

and bonding patterns. 

This work is organized as follows. Section 2 describes the theoretical methods and 

computational details. Section 3 presents and discusses the results. The main conclusions are 

given in Section 4. 

 

 



www.manaraa.com

 46 

Methods 

 

The EFP2 method has been implemented in the quantum chemistry program 

GAMESS59, which was used for all calculations in this study. 

Dimer geometries. To benchmark the performance of EFP2 versus CCSD(T) and 

SAPT, the monomer and dimer geometries were adopted from ref. 1. The procedure used in 

ref. 1 to find the dimer structures was as follows. The geometries of all monomers were 

optimized with MP2 and the aug-cc-pVTZ basis set.60 For benzene, a C-C bond length of 

1.3942 Å and C-H bond length of 1.0823 Å were obtained. The geometry of the toluene 

monomer was fixed at Cs symmetry, with one methyl hydrogen above the benzene ring and 

two below it, and phenol was chosen to be planar. In all dimer calculations in ref. 1, the 

monomers were held rigid, having fixed internal coordinates. The dimer geometries were 

obtained by moving the rigid monomers relative to one another in order to find the optimal 

intermonomer distance (defined as the distance between ring centers) for the sandwich, T-

shaped(1), and T-shaped(2) configurations (see Fig. 3.1). These structures are not actual 

energy minima for the dimers in question, but are constrained model structures chosen in ref. 

1 for the purpose of assessing the influence of substituents on the π-π interactions. For 

example, to minimize direct interactions between the substituent on one ring and the other 

unsubstituted ring, the substituent in the T-shaped dimers is held in a para position relative to 

the un-substituted benzene. This serves to maintain focus on the effect of the substituent on 

the π-π interactions.  

In this study, the monomer geometries from ref. 1 were used to generate EFP2 

interaction parameters with the 6-311++G(3df,2p) basis set. The underlying 6-311G basis set 

is accurate for modeling electrostatic interactions, while polarization functions are important 

for modeling dispersion interactions57 and diffuse functions are required for accurate 

exchange-repulsion interactions45. Distributed multipoles on atoms and bond mid-points were 

generated using a numerical integration scheme.48 The electrostatic charge-charge, charge-

dipole, charge-quadrupole, and dipole-dipole energies were screened by charge-penetration 

damping functions, as described in ref. 48.  
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As in ref. 1, the intermonomer distances in each of the chosen dimer configurations 

(Fig. 3.1) were varied to find the optimal EFP2 dimer geometry. Performing the geometry 

optimizations in this way facilitates a direct comparison of the optimal intermonomer 

distances (R) and energies (Eint) with the corresponding CCSD(T) values from ref. 1. 

Energy component comparison.  In order to analyze the accuracy of each 

component (Coulomb, exchange-repulsion, polarization, and dispersion) of the EFP2 energy, 

separate EFP2 calculations were performed at the dimer geometries used in the SAPT/aug-

cc-pVDZ calculations in ref. 1. Sandwich dimers have a 3.70 Å intermonomer separation, 

while a 4.90 Å separation was used for the T-shaped(1) and T-shaped(2) dimers. 

Investigation of the EFP2 potential energy surface. In addition to direct 

comparisons of the accuracy of EFP2 to that of CCSD(T), MP2, and SAPT, a Monte 

Carlo/simulated annealing (MC/SA)61 study was performed on the EFP2 dimers to 

investigate the potential energy surface of each dimer. To increase the conformational 

sampling, two temperature ranges were used in each case: 20,000 – 100 K and 3000 – 100 K. 

A sandwich geometry was used as the starting structure for each dimer. Geometry 

optimizations were performed every 10 steps. 

 

Results and Discussion 

 

Intermonomer separations and binding energies.  Table 3.1 compares the optimal 

EFP2 distances and binding energies of the substituted dimers with the distances and 

energies found with the MP2 and CCSD(T) methods, as given in ref. 1 for the constrained 

sandwich, T-shaped(1), and T-shaped(2) structures. The optimal EFP2 intermonomer 

distances are consistently larger than the estimated CCSD(T)/aug-cc-pVTZ distances by 0.05 

to 0.10 Å for the sandwich dimers, 0.15 to 0.25 Å for the T-shaped(1) dimers, and 0.15 to 

0.21 Å for the T-shaped(2) dimers. Compared to CCSD(T), MP2 with the aug-cc-pVTZ basis 

set consistently underestimates the intermonomer distances by 0.1 to 0.2 Å for all dimer 

geometries. MP2/aug-cc-pVDZ results are in better agreement with those of CCSD(T), 

underestimating the intermonomer distances by at most 0.1 Å. This suggests that there is a 

fortuitous cancellation of errors for MP2 with the smaller basis set. 
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Table 3.1. Optimized intermonomer distances (R), in Ångstroms, and interaction energies 
(Eint), in kcal/mol, for the sandwich, T-shaped(1), and T-shaped(2) structures of the benzene-
substituted dimers. MP2 and estimated CCSD(T) results from ref. 1. 

Sandwich T-shaped(1) T-shaped(2) X method 
R Eint R Eint R Eint 

H MP2/aug-cc-pVDZ 3.80 -2.90 5.01 -3.16 5.01 -3.16 
  MP2/aug-cc-pVTZ 3.70 -3.26 4.89 -3.46 4.89 -3.46 
  CCSD(T)/aug-cc-pVTZ 3.90 -1.80 4.99 -2.62 4.99 -2.62 
  EFP2 3.95 -2.17 5.15 -2.42 5.15 -2.42 

OH MP2/aug-cc-pVDZ 3.70 -3.40 5.00 -3.14 4.95 -3.23 
  MP2/aug-cc-pVTZ 3.60 -3.75 4.90 -3.42 4.90 -3.52 
  CCSD(T)/aug-cc-pVTZ 3.80 -2.17 5.00 -2.58 5.00 -2.67 
  EFP2 3.90 -2.72 5.15 -2.54 5.15 -2.45 

CH3 MP2/aug-cc-pVDZ 3.70 -3.58 5.00 -3.11 4.90 -3.60 
  MP2/aug-cc-pVTZ 3.65 -3.96 4.90 -3.39 4.80 -3.89 
  CCSD(T)/aug-cc-pVTZ 3.80 -2.27 5.00 -2.55 5.00 -2.95 
  EFP2 3.90 -2.78 5.20 -2.47 5.15 -2.95 
F MP2/aug-cc-pVDZ 3.70 -3.50 4.95 -3.35 5.00 -2.87 
  MP2/aug-cc-pVTZ 3.70 -3.81 4.90 -3.61 4.90 -3.17 
  CCSD(T)/aug-cc-pVTZ 3.80 -2.29 5.00 -2.77 5.00 -2.38 
  EFP2 3.90 -3.02 5.15 -2.79 5.20 -2.30 

CN MP2/aug-cc-pVDZ 3.70 -4.49 4.90 -3.79 5.00 -2.82 
  MP2/aug-cc-pVTZ 3.60 -4.86 4.80 -4.11 4.90 -3.08 
  CCSD(T)/aug-cc-pVTZ 3.80 -3.05 4.90 -3.25 5.00 -2.20 
  EFP2 3.85 -3.91 5.15 -3.20 5.15 -2.23 

 

For the sandwich dimers, EFP2 overestimates the magnitude of the binding energies 

by 0.36 to 0.86 kcal mol-1 compared to CCSD(T). In all cases, this represents a significant 

improvement over MP2, which overestimates the binding energy by 1.1 to 1.8 kcal mol-1 

compared with the CCSD(T) values. EFP2 most accurately models the unsubstituted benzene 

sandwich dimer, giving a 0.37 kcal mol-1 error in the binding energy as compared to the 

estimated CCSD(T) energy. The benzene-benzonitrile sandwich dimer binding energy has 

the highest error at 0.86 kcal mol-1. Compared to CCSD(T), MP2 underestimates the 

intermonomer separation and overestimates the binding energies of the dimer, whereas EFP2 

overestimates both the intermonomer distances and binding energies. The overestimation of 

binding energies occurs to a much smaller degree with EFP2 than with MP2. A disconcerting 

observation is that the MP2 error in the binding energy increases when the basis set is 

improved. 
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EFP2 is very accurate in calculating the binding energies of the T-shaped(1) and T-

shaped(2) dimers. The EFP2 binding energy of the T-shaped(1) unsubstituted benzene dimer 

(identical to the T-shaped(2) unsubstituted dimer) is higher (less strongly bound) than the 

corresponding CCSD(T) energy by 0.20 kcal mol-1. Of the substituted T-shaped(2) dimers, 

benzene-phenol is the most in error at 0.22 kcal mol-1 higher in energy. Discrepancies in the 

other EFP2 T-shaped dimers range from 0.02 kcal mol-1 lower in energy (more strongly 

bound) to 0.08 kcal mol-1 higher in energy compared to CCSD(T). The EFP2 benzene-

toluene energy is in perfect agreement with the estimated CCSD(T) energy for that dimer. 

Contrary to the excellent performance of EFP2, MP2 overestimates the binding energies of 

T-shaped(1) and T-shaped(2) dimers, becoming even less accurate when increasing the basis 

set from aug-cc-pVDZ to aug-cc-pVTZ. 

These EFP2 results also compare favorably with the results of a DFT study36 

performed on the same set of substituted benzene dimers using a van der Waals (vdW)-

corrected density functional.43 This vdW-DFT method overestimates the magnitude of the 

sandwich dimer interaction energies by 0.56 to 0.68 kcal mol-1 compared to CCSD(T) and 

underestimates the binding in the T-shaped dimers, by 0.28 to 0.39 kcal mol-1 in the T-

shaped(1) and by 0.19 to 0.34 kcal mol-1 in the T-shaped(2) dimers. In comparison, EFP2 

overbinds the sandwich dimers by 0.36 to 0.86 kcal mol-1 compared to CCSD(T) and differs 

from the CCSD(T) results for the T-shaped dimers by less than 0.1 kcal mol-1 (except for the 

unsubstituted dimer and the T-shaped(2) benzene-phenol dimer, which are 0.2 kcal mol-1 less 

strongly bound). EFP2 requires considerably less computer time (on the order of seconds) 

once the MAKEFP potentials have been generated. In contrast, the GGA portion of the vdW-

DFT calculations requires 1.3 h on a single Opteron processor.36  

Energy component comparison.  Table 3.2 and Figs. 3.2-3.4 compare the SAPT 

(from ref. 1) and EFP2 Coulomb, exchange-repulsion, polarization (or induction), and 

dispersion energies for the three types of constrained geometries. The energy component 

comparison was carried out at fixed intermonomer distances (3.70 Å for the sandwich 

structures, 4.90 Å for both types of T-shaped structures) that were smaller than the EFP2 

equilibrium intermonomer distances but close to the estimated CCSD(T) equilibrium 

distances (see Table 3.1).  
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Table 3.2. Contributions to the binding energy (kcal/mol) for the sandwich, T-shaped(1), and 
T-shaped(2) dimers. The intermonomer separations are 3.70 Angstrom in the sandwich 
dimers and 4.90 Angstrom in the T-shaped(1) and T-shaped(2) dimers. SAPT results are 
from ref. 1. 

Sandwich T-shaped(1) T-shaped(2) X Energy 
Component SAPT EFP2 SAPT EFP2 SAPT EFP2 

H Coulomb -0.97 -0.70 -2.24 -2.71 -2.24 -2.71 
  ex.-repulsion  6.03 6.03 4.87 4.96 4.87 4.96 
  polarization -0.33 -0.41 -0.67 -0.31 -0.67 -0.31 
  dispersion -6.53 -6.38 -4.37 -3.83 -4.37 -3.83 
  total energy -1.80 -1.46 -2.42 -1.89 -2.42 -1.89 

OH Coulomb -1.08 -1.03 -2.21 -2.69 -2.18 -2.64 
  ex.-repulsion 5.85 5.75 4.85 5.05 4.78 4.86 
  polarization -0.34 -0.39 -0.66 -0.33 -0.66 -0.27 
  dispersion -6.72 -6.55 -4.37 -4.07 -4.41 -3.86 
  total energy -2.29 -2.22 -2.39 -2.04 -2.47 -1.91 

CH3 Coulomb -1.03 -0.65 -2.24 -2.63 -2.38 -2.69 
  ex.-repulsion 6.21 5.85 5.02 5.24 4.81 4.76 
  polarization -0.40 -0.42 -0.67 -0.34 -0.70 -0.35 
  dispersion -7.19 -7.03 -4.46 -4.16 -4.59 -4.26 
  total energy -2.41 -2.26 -2.34 -1.89 -2.85 -2.54 
F Coulomb -1.36 -1.54 -2.27 -2.82 -1.98 -2.43 
  ex.-repulsion 5.73 5.63 4.55 4.72 4.73 4.82 
  polarization -0.29 -0.31 -0.68 -0.37 -0.57 -0.20 
  dispersion -6.49 -6.31 -4.22 -3.92 -4.30 -3.92 
  total energy -2.40 -2.53 -2.63 -2.39 -2.12 -1.73 

CN Coulomb -1.83 -1.92 -2.59 -3.22 -1.73 -1.96 
  ex.-repulsion 5.78 5.55 4.59 4.77 4.69 4.49 
  polarization -0.29 -0.29 -0.83 -0.53 -0.51 -0.10 
  dispersion -7.01 -6.87 -4.29 -3.83 -4.53 -4.20 
  total energy -3.36 -3.54 -3.12 -2.81 -2.09 -1.77 

 

As described in ref. 1, SAPT predicts that dispersion is the single greatest attractive 

contribution to the overall binding energy of the dimers, especially for the sandwich 

structures. The sandwich dimers with electron-withdrawing substituents (CN and F) have the 

most favorable Coulomb interaction energy coupled with the lowest exchange-repulsion 

energy, giving them the strongest sandwich binding energies. The order of the total binding 

energies for the other sandwich dimers corresponds to the order of their dispersion energies. 

Due to the greater intermonomer separation in the T-shaped dimers, the exchange-repulsion 

and dispersion components of their binding energies are smaller than those of the sandwich 

structures. The Coulomb attractions in the T-shaped(1) and T-shaped(2) dimers are stronger 
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compared to the sandwich structures because the negatively charged π cloud of one monomer 

interacts with the positively charged hydrogens of the other. 

Overall, good agreement is found between the EFP and SAPT energy terms (Table 

3.2, Figs. 3.2-3.4). The EFP2 dispersion interaction is consistently lower in magnitude than 

that predicted by SAPT, but always by less than 0.5 kcal mol-1; dispersion remains the 

dominant attractive contribution to the binding energy for both the sandwich and T-shaped 

dimers. The EFP2 polarization terms for the sandwich dimers agree to within ~0.1 kcal mol-1 

with those predicted by SAPT. For the T-shaped(1) and T-shaped(2) dimers, the polarization 

terms are smaller in magnitude by 0.3 - 0.4 kcal mol-1 compared with the SAPT results. The 

EFP2 Coulomb term is slightly more negative than the corresponding SAPT term in the 

sandwich dimers with electron-withdrawing substituents (CN, F), but less negative in the 

benzene-benzene and benzene-toluene dimers. The EFP2 Coulomb interaction for the T-

shaped structures is ~0.5 kcal mol-1 lower in energy on average compared to SAPT. The 

EFP2 exchange-repulsion generally differs from that obtained from SAPT by less than 0.1 

kcal mol-1.  

For the sandwich structures (Figure 3.2A,B), the SAPT binding energy increases in 

magnitude in the order H < OH < F ≈ CH3 < CN; the order predicted by both EFP2 and 

CCSD(T) is a very similar H < OH < CH3 < F < CN (see Table 3.1). Overall, the trends 

predicted by EFP2 for the sandwich dimers agree with those found with SAPT in Ref. 1. 

In the first set of T-shaped dimer structures (Figure 3.3A,B), the magnitudes of the 

dispersion and the exchange-repulsion terms are significantly reduced compared to their 

values in the sandwich dimer structures. This is reflected in both the SAPT and the EFP2 

results. The order of increasing strength of the total interaction energy is CH3 ≈ OH ≈ H < F 

< CN and CH3 ≈ H < OH < F < CN for SAPT and EFP2, respectively. Taking into account 

the very small (< 0.1 kcal mol-1) binding energy differences between CH3, OH, and H-

substituted dimers, the agreement between SAPT and EFP2 is very reasonable. The overall 

EFP2 binding energies are 0.2 to 0.5 kcal mol-1 lower in magnitude than SAPT binding 

energies. This reflects the fact that the chosen intermonomer separations are shorter than the 

optimal EFP2 geometries.  
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Figure 3.2. (A) Electrostatic, exchange-repulsion, polarization (induction), and dispersion 
components and (B) total interaction energies for the sandwich dimers computed with EFP2 
and SAPT. SAPT data are from ref. 1. 
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Figure 3.3. (A) Electrostatic, exchange-repulsion, polarization (induction), and dispersion 
components and (B) total interaction energies for the T-shaped(1) dimers computed with 
EFP2 and SAPT. SAPT data are from ref. 1. 
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Figure 3.4. (A) Electrostatic, exchange-repulsion, polarization (induction), and dispersion 
components and (B) total interaction energies for the T-shaped(2) dimers computed with 
EFP2 and SAPT. SAPT data are from ref. 1. 
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SAPT predicts the order of increasing binding energies for the T-shaped(2) structures 

to be CN ≈ F < H ≈ OH < CH3, while EFP2 predicts F < CN (Fig. 3.4A,B). However, these 

energy differences are very small. In general, the EFP2 exchange-repulsion energy in T-

shaped(2) dimers closely resembles the SAPT exchange-repulsion. The EFP Coulomb terms 

are more attractive by 0.2 to 0.5 kcal mol-1 compared with SAPT. As with the T-shaped(1) 

dimers, the magnitude of the T-shaped(2) EFP2 polarization and dispersion energies are 

slightly lower than those for SAPT; this results in some error cancellation with the Coulomb 

term.  

To summarize, trends due to substituent effects in each interaction energy component, 

as well as in the total binding energies, are well reproduced by EFP2 (Figs. 3.2-3.4). This is 

encouraging for future EFP2 studies of more complex species.  

The potential energy surface. The conformational space of each dimer was explored 

using Monte Carlo/simulated annealing with the EFP2 method. The lowest energy structures 

for each dimer are shown in Figures 3.5-3.9. All geometries shown have positive definite 

Hessians.  

The three minima found by EFP2 on the benzene dimer potential energy surface are 

parallel-displaced (Fig. 3.5B), tilted T-shaped (Fig. 3.5A), and edge-to-edge (Fig. 3.5C) 

structures, in agreement with recent SAPT(DFT) studies by Podeszwa, et al.33 The parallel-

displaced and tilted T-shaped configurations are predicted to be almost isoenergetic, with 

CCSD(T) favoring the latter structure by 0.1 kcal mol-1.30,33 EFP2 is in agreement with 

CCSD(T), predicting the tilted T-shaped structure to be the global minimum, with the 

parallel-displaced configuration ~0.4 kcal/mol higher in energy. The edge-to-edge 

configuration is ~1 kcal mol-1 higher in energy than the parallel-displaced one. The EFP2 

parallel-displaced configuration is slightly less displaced48 than is predicted by MP230, 

CCSD(T)31, or SAPT(DFT)33. As discussed in ref. 48, the discrepancy in the R2 distance (the 

“displacement coordinate” defined in ref. 30) between MP2 or CCSD(T) and EFP2 is 0.4 Å. 

That is, the EFP2 parallel-displaced structure is less relaxed (closer to the sandwich structure) 

than are the MP2 or CCSD(T) isomers. This results in a slightly higher EFP2 energy for the 

parallel-displaced structure and consequently a slightly larger (0.4 kcal mol-1) energy  
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Figure 3.5. Lowest energy benzene-benzene structures found with EFP2 Monte 
Carlo/simulated annealing. Energies in kcal mol-1. 
 

difference between the tilted T-shaped and parallel-displaced configurations, compared to 0.1 

kcal mol-1 for both CCSD(T) and SAPT(DFT). 

For the substituted dimers, unconstrained geometry optimizations lead to minima that 

are similar to those of the benzene dimer; that is, configurations resembling the parallel-

displaced, T-shaped, or edge-to-edge structures. However, the predicted energetic ordering of 

these conformations depends on the substituent. The origins of these differences are analyzed 

in the following discussion.  

The parallel-displaced structure is common to all dimers. As in the benzene dimer, 

binding in the substituted parallel-displaced dimers is dominated by dispersion. As discussed 

above for the constrained sandwich dimers, substituents significantly increase the binding 

energies in the parallel-displaced dimers (by 1.3-2.8 kcal mol-1). The CN-substituted dimer 

(Figure 3.9A) is the most strongly bound, followed by OH (Fig. 3.6B), F (Fig. 3.8A), and  
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Figure 3.6. Lowest energy benzene-phenol structures, using a planar phenol monomer, found 
with EFP2 Monte Carlo/simulated annealing. Energies in kcal mol-1. 
 

CH3 (Fig. 3.7A). The binding energies of the latter three structures are very similar and 1.3-

1.4 kcal mol-1 bigger than in the parallel-displaced benzene dimer. 

Binding energies in the unconstrained substituted parallel-displaced dimers are 0.6-

1.1 kcal mol-1 stronger than those in the corresponding constrained sandwich dimers. The 

origin of the stronger binding is partially the electron-donating/electron-withdrawing effects 

of the substituents and partially the interaction between the substituent and the benzene ring 

in the unconstrained structures. For example, stabilization in the OH, F, and CN substituted 

dimers is partly due to favorable Coulomb interactions between the electronegative 

substituent and the positively charged hydrogens of the unsubstituted benzene. This is 

reflected in both the significantly larger Coulomb energies, and the slightly tilted dimer 

structures in which the substituent is angled closer to the benzene. In contrast, the CH3 

substituted dimer is perfectly parallel, and the additional stabilization in this species is mainly  
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Figure 3.7. Lowest energy benzene-toluene structures found with EFP2 Monte 
Carlo/simulated annealing. Energies in kcal mol-1. 
 

due to the dispersion forces between the CH3 group and the benzene ring. Consequently, the 

benzene-toluene dimer (Fig. 3.7A) has the smallest binding energy of the substituted parallel-

displaced species.  

Binding in the T-shaped dimers is governed by a balance between the dispersion and 

Coulomb interactions. Among the unconstrained EFP2 T-shaped structures, the CN-

substituted dimer (9b) has the largest binding energy of 4.7 kcal mol-1, closely followed by 

the OH dimer (3.6A). Two CH3-substituted dimers (3.7B,C) and the F-substituted dimer 

(3.8B) have binding energies of 3.0 – 3.3 kcal mol-1. As in the parallel-displaced structures, 

the benzene-benzonitrile and benzene-fluorobenzene dimers are stabilized through Coulomb 

interactions between the electronegative substituents and the unsubstituted benzene ring. The 

T-shaped benzene-phenol structure is different from other T-shaped dimers because its 

binding is dominated by the interaction between the partially positive hydrogen of the 

hydroxyl group and the negative π cloud of the unsubstituted benzene. The interaction in 

benzene-phenol is thus similar to that in the benzene-water dimer.62 The important role of the  
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Figure 3.8. Lowest energy benzene-fluorobenzene structures found with EFP2 Monte 
Carlo/simulated annealing. Energies in kcal mol-1. 
 

hydroxyl group in the binding of benzene-phenol in the T-shaped isomer is also reflected in 

the modestly larger polarization term as compared to other dimers. Both conformations of the 

T-shaped-like benzene-toluene dimer are slightly stabilized by dispersion. 

All substituted dimer edge-to-edge structures are also bound more strongly than is the 

analogous benzene dimer isomer. Additional stabilization in OH, F, and CN substituted 

dimers occurs due to Coulomb interactions between the positively charged hydrogens of the 

benzene ring and the partial negative charge on the substituent group. Indeed, in these 

dimers, a weak edge-to-edge interaction between the two benzene rings is augmented by a 

stronger edge-to-substituent interaction. As for the T-shaped dimers, the strength of the 

interaction in the edge-to-edge-type dimers decreases in the order CN > OH > F.  

Now, consider how substituents affect the relative energies of the different 

conformations of the dimers. Based on the preceding analyses, it is expected that the EFP2  
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Figure 3.9. Lowest energy benzene-benzonitrile structures found with EFP2 Monte 
Carlo/simulated annealing. Energies in kcal mol-1. 
 

interactions are within 0.5 kcal mol-1 or less of the CCSD(T) values, so the trends are 

generally qualitatively and quantitatively captured by the EFP2 method. In all but benzene-

benzene and phenol-benzene, the most strongly bound EFP2 structure is parallel-displaced 

rather than T-shaped. A rationale for this is that in the offset structures, the optimal benzene-

ring orientation stays almost unchanged, but additional stabilization occurs due to favorable 

Coulomb and dispersion interactions of the substituent group with the unsubstituted benzene. 

In the substituted T-shaped dimers the interaction between the benzene rings is sterically less 

favorable than in the unsubstituted T-shaped benzene dimer. The exception to this trend is 

the benzene-phenol dimer, in which the T-shaped-like configuration is lower in energy than 

the parallel-displaced configuration by 0.8 kcal mol-1. This is because the phenol hydroxyl 

group strongly interacts with the π cloud of the benzene. 
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Conclusions 

 

This study explores the applicability and accuracy of the general effective fragment 

potential (EFP2) method, the first-principles-based model potential, to systems with aromatic 

π-π interactions, i.e., benzene-benzene, benzene-toluene, benzene-phenol, benzene-

flourobenzene, and benzene-benzonitrile dimers. The first part of the paper compares the 

EFP binding energies for the constrained geometries based on the work of Sherrill and 

coworkers.1 The EFP2 binding energies are in excellent agreement with the CCSD(T) results 

in the constrained T-shaped dimers and overestimate those in the sandwich dimers by less 

than 0.9 kcal mol-1. For these aromatic complexes, EFP2 is more accurate than MP2. The 

latter, compared to CCSD(T), overestimates binding in both the T-shaped and sandwich 

structures by up to 1.0 and 1.8 kcal mol-1, respectively. These results are excellent in view of 

the computational cost of each method. For example, a single-point energy calculation of the 

benzene dimer in the 6-311+G(3df,2p) basis with MP2 would require 142 minutes of CPU 

time on one IBM Power5 processor, whereas the analogous EFP2 calculation takes only 0.4 

seconds. 

Some of the discrepancy between EFP2 and higher levels of theory such as CCSD(T) 

likely occurs due to the omission of some higher-order terms in the EFP2 expansions. For 

instance, including induced quadrupoles in the polarization energies and higher order terms 

in the dispersion expansion can be of importance. These terms will be targeted in future 

developments of the EFP2 method.  

It is very encouraging that EFP2 correctly reflects the energy changes due to different 

substituents. EFP2 also provides excellent agreement with symmetry adapted perturbation 

theory (SAPT) for the different components of the total binding energy – Coulomb, 

exchange-repulsion, polarization, and dispersion – demonstrating the utility of EFP2 as an 

accurate and computationally inexpensive tool for the analysis of binding patterns in 

molecular complexes and (potentially) liquids.  

Finally, an independent EFP2 study was performed of the potential energy surface of 

each dimer by employing a Monte Carlo/simulated annealing technique. The CN, F, and CH3 
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substituents stabilize and favor the parallel-displaced configurations. Binding in the benzene-

phenol dimer resembles that of the water-benzene complex.  
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CHAPTER 4: BENZENE-PYRIDINE INTERACTIONS PREDICTED BY THE 

EFFECTIVE FRAGMENT POTENTIAL METHOD 

 

Pending publication in the Journal of Physical Chemistry A 

Q. A. Smith, L. V. Slipchenko, and M. S. Gordon 

 

Abstract 

 

The accurate representation of nitrogen-containing heterocycles is essential for modeling 

biological systems. In this study, the general effective fragment potential (EFP2) method is 

used to model dimers of benzene and pyridine, complexes for which high-level theoretical 

data – including large basis spin-component-scaled second-order perturbation theory (SCS-

MP2), symmetry adapted perturbation theory (SAPT), and coupled cluster with singles, 

doubles, and perturbative triples (CCSD(T)) – are available.  An extensive comparison of 

potential energy curves and components of the interaction energy is presented for sandwich, 

T-shaped, parallel displaced, and hydrogen bonded structures of these dimers. EFP2 and 

CCSD(T) potential energy curves for the sandwich, T-shaped, and hydrogen-bonded dimers 

have an average root mean square deviation (RMSD) of 0.49 kcal/mol; EFP2 and SCS-MP2 

curves for the parallel displaced dimers have an average RMSD of 0.52 kcal/mol. 

Additionally, results are presented from an EFP2 Monte Carlo/simulated annealing (MC/SA) 

computation to sample the potential energy surface of the benzene-pyridine and pyridine 

dimers.  

 

Introduction 

 

Aromatic π-π interactions are of fundamental importance in biological systems: they 

appear in protein folding1, DNA structure2, and drug binding3. Benzene and substituted 

benzene dimers have been used as model systems to study these interactions, but biologically 

important molecules, including amino acids and DNA bases, often contain aromatic 

heterocycles in addition to substituents on the aromatic ring. Therefore, for a theoretical 
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method to be useful for modeling biological systems, it must be able to accurately describe 

the effects on π-π interactions arising from both ring substituents and from heteroatom 

(especially nitrogen) substitution. 

The general effective fragment potential (EFP2)4 method has previously been used to 

model the π-π and π-hydrogen interactions of benzene dimers5, benzene-water complexes6, 

and substituted benzene dimers7 to a high degree of accuracy, approaching that of coupled 

cluster theory with singles, doubles, and perturbative triples (CCSD(T))8. The present work 

extends these benchmark EFP2 studies to examine the π-π and π-hydrogen interactions of 

aromatic nitrogen-containing heterocycles, specifically dimers of pyridine and benzene-

pyridine. Pyridine and benzene-pyridine interactions have been examined extensively at a 

high level of ab initio theory by Hohenstein and Sherrill.9 Also notable are previous density 

functional theory (DFT)10 and combined ab initio and DFT investigations11. A favorable 

comparison between EFP2 and the high-level results for these chemical systems will help to 

establish EFP2 as a viable method for modeling more complex bio-molecules. 

EFP2 is an ab initio-based model potential method that was designed to model 

intermolecular interactions. A set of parameters to account for the major noncovalent forces – 

Coulomb, exchange-repulsion, polarization (induction), and dispersion – for each unique 

fragment is derived from a single ab initio calculation. These parameters can be used in 

subsequent calculations to model interactions with other EFP fragments or with ab initio 

molecules. Unlike many other model potential methods, the parameters are not empirically 

fitted. EFP fragments have frozen internal geometries. 

The advantage of EFP over traditional ab inito methods is its low computational cost. 

For example, a single-point energy calculation for the benzene dimer with second order 

perturbation theory (MP2)10 and the 6-311++G(3df,2p) basis set11 takes 142 minutes on a 

single IBM Power5 processor, while an EFP2 calculation with the same basis set takes only 

0.4 seconds, after the EFP2 potential has been generated in a prior calculation.5  The 

calculation to generate the EFP2 potential on a single fragment takes about as long as a MP2 

calculation. 
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Methods 

 

The general effective fragment potential (EFP2) method is coded in the GAMESS 

(General Atomic and Molecular Electronic Structure System)13 computational chemistry 

software package, which was used for all calculations in this study. The EFP2 energy is 

comprised of Coulomb, exchange-repulsion, polarization (induction), dispersion, and charge 

transfer terms. The Coulomb term is computed via Stone’s distributed multipolar 

expansion,14 carried out through octopole moments. Both analytical and numerical15 

distributed multipolar analysis (DMA) is available; the numerical DMA was chosen for this 

study. Exchange-repulsion is derived as an expansion in the intermolecular overlap, truncated 

at the quadratic term.16 EFP2 polarization is expressed as a sum of localized molecular 

orbital (LMO) polarizabilities, where the polarizable points are located at the LMO centroids 

(i.e., valence bonds and lone pairs of the molecule). The LMO polarizabilities are calculated 

from the coupled-perturbed Hartree-Fock equations.17 Dispersion is expressed as 

! 

Edisp "
C6

R6
+
C8

R8
, with an explicitly derived C6/R6 term and an estimated C8/R8 term. The C6 

coefficient is derived from the frequency-dependent polarizabilities integrated over the 

imaginary frequency range.18 The charge transfer term, which is omitted in the present work, 

was derived using a perturbative analysis of the interaction between occupied orbitals on one 

fragment and virtual orbitals on a second fragment.19 The charge transfer interaction is 

significant only if charged or highly polar species (e.g. water) are present; previous work19 

has shown that this term does not contribute significantly to the total interaction energy of 

most neutral molecules.  

Various Coulomb damping functions are employed in the EFP2 method for modeling 

charge penetration.20 In this study, charge penetration was modeled by an exponential 

damping function multiplying the distributed multipoles, including charge-charge, charge-

dipole, charge-quadrupole, dipole-dipole, and dipole-quadrupole terms. The polarization and 

dispersion terms were also screened to account for close range interaction. Polarization 

screening takes the form of a Gaussian function and dispersion screening uses an overlap-

based damping factor, both with no parameterization. These damping functions are described 

extensively in ref. 20. 
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Monomer and dimer geometries for benzene-pyridine and pyridine-pyridine dimers 

were obtained from ref. 9. In that work, experimental geometries were chosen for the 

monomers. The monomer geometry of benzene is from Gauss and Stanton21, with a carbon-

carbon bond length of 1.3915 Å and a carbon-hydrogen bond length of 1.0800 Å. The 

monomer geometry of pyridine is that of Innes et al.22 EFP2 potentials for the monomers at 

these geometries were calculated with the 6-311++G(3df,2p) basis. In both ref. 9 and in the 

present study, the monomers are held rigid, having fixed internal coordinates. 

 

 
Fig. 4.1.  Sandwich configurations of benzene ((Bz)2), benzene-pyridine (Bz-Py), and 
pyridine ((Py)2) dimers. R is the distance between ring centers. 
 

Dimer geometries were also obtained from ref. 9. These geometries were chosen in 

order to gain a better understanding of fundamental π-π and π-hydrogen interactions and to 

examine how these interactions are affected by the heteroatom; therefore, the dimer 

geometries are not potential energy minima or experimentally obtained structures. (For 

example, the benzene dimer sandwich structure is a saddle point between two symmetry-

equivalent parallel displaced structures.23) Three major classes of benzene (Bz) and pyridine 

(Py) dimer geometries were examined: sandwich (Fig. 4.1), T-shaped (Fig. 4.2), and parallel 

displaced (Fig. 4.3). For sandwich and T-shaped dimers, the distance R is a measure of the  
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Fig. 4.2.  T-shaped configurations of benzene ((Bz)2), benzene-pyridine (Bz-Py), and 
pyridine ((Py)2) dimers. R is the distance between ring centers. 
 

vertical separation between the ring centers. Potential energy curves for these two types of 

dimers were obtained by varying R in increments of 0.1 Å near the potential minimum (3.2 Å 

≤ R ≤ 5.0 Å for sandwich; 4.2 Å ≤ R ≤ 6.0 Å for T-shaped) and by 0.5 Å far from the 

minimum (5.0 Å ≤ R ≤ 7.0 Å for sandwich; 6.0 Å ≤ R ≤ 9.0 Å for T-shaped). Individual 

parallel displaced configurations had a vertical displacement R of 3.4 Å and a horizontal 

displacement H of 1.6 Å. These choices facilitate comparison with results from symmetry 

adapted perturbation theory (see below). To generate parallel displaced potential energy 

curves, the vertical displacement was fixed at 3.5 Å, while the horizontal displacement was 

varied in increments of 0.2 Å. Parallel displaced conformations pass through sandwich 

conformations at H = 0 Å. They are designated with an “a” if the horizontal displacement 

goes over a vertex (the heteroatom), and they are designated with a “b” if the displacement 

goes over an edge (the bond between pyridine carbons 2 and 3). A (+) or a (-) indicates the 

direction of the displacement in cases in which the displacement is not symmetric.  
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Fig. 4.3.  Parallel displaced configurations of benzene ((Bz)2), benzene-pyridine (Bz-Py), and 
pyridine ((Py)2) dimers. R is the vertical separation and H is the horizontal separation 
between monomers. 
 

Displacement of the upper monomer is considered to be positive if it is moved left to right 

relative to the perspective shown in Fig. 4.3. 

Although the major focus of this study is on π-π and π-hydrogen interactions, the 

hydrogen bonded pyridine dimer was investigated as well (Fig. 4.4), due to the importance of 

hydrogen bonded interactions in biological compounds. The distance between ring centers, 

R, in the hydrogen bonded complex was varied in increments of 0.1 Å. 

 
Fig. 4.4.  Configuration of the hydrogen bonded pyridine dimer. R is the distance between 
ring centers. 
 

EFP2 total interaction energies and potential energy curves are compared with those 

reported in Ref. 9. The calculations reported by Hohenstein and Sherrill9 were performed as 

follows. For the sandwich, T-shaped, and hydrogen bonded dimers, large-basis CCSD(T) 
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single-point energies were computed by adding a coupled-cluster correction to a large-basis 

second-order perturbation theory (MP2) energy: 

! 

ECCSD(T )
l arg e"basis # EMP 2

l arg e"basis + $CCSD(T) . The 

correction, ΔCCSD(T), is the difference between a CCSD(T) energy and an MP2 energy 

obtained with a smaller basis: 

! 

"CCSD(T) = ECCSD(T )
small#basis # EMP 2

small#basis. The MP2 complete basis 

set (CBS) limit was estimated using the aug-cc-pVTZ and aug-cc-pVQZ basis sets24 with the 

two-point extrapolation scheme of Haliker et al.25 Energies for the parallel displaced 

configurations were calculated using spin-component-scaled second-order perturbation 

theory (SCS-MP2)26 with the aug-cc-pVTZ basis set. The Boys-Bernardi counterpoise 

correction27 was employed to account for basis set superposition error (BSSE) with all 

energy computations. [Note that BSSE corrections are not required for the EFP2 method.] 

To analyze contributions to the total interaction energy, EFP2 Coulomb, exchange-

repulsion, polarization (induction), and dispersion energy terms were determined for dimers 

at the geometries used by Hohenstein and Sherrill and compared with the analogous terms 

obtained9 using symmetry adapted perturbation theory28 (SAPT). Since the SAPT interaction 

energies obtained by Hohenstein and Sherrill are second-order or lower with respect to the 

intermolecular correlation operator, they are referred to as SAPT2 energies. The SAPT2 

energies were computed with the aug-cc-pVDZ’ basis set, which consists of the cc-pVDZ 

basis set with the diffuse s and p functions of aug-cc-pVDZ added to non-hydrogen atoms. 

Finally, a Monte Carlo/simulated annealing (MC/SA)29 study was performed on the 

EFP2 benzene-pyridine and pyridine dimers to explore their respective potential energy 

surfaces. Temperature ranges of both 20,000 – 100 K and 3,000 – 100 K were used. 

Geometry optimizations were performed every 10 steps during the MC/SA simulations.  

 

Results and Discussion 

 

Sandwich. A comparison of EFP2 and CCSD(T) interaction energies and 

intermonomer separations at the respective potential energy minima of each sandwich dimer 

can be found in Table 4.1. The absolute differences between EFP2 and CCSD(T) energies for 

the minimum-energy sandwich dimer configurations range from 0.57 kcal/mol ((Bz)2 S) to 

0.90 kcal/mol ((Py)2 S1). For the three pyridine-containing sandwich dimers, EFP2 predicts  
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Table 4.1. Comparison of EFP2 and CCSD(T) potential energy minima of sandwich and T-
shaped configurations of benzene, benzene-pyridine, and pyridine dimers. Intermonomer 
separation (R, Å) and interaction energy (ΔE, kcal/mol) of potential minima of sandwich (S) 
and T-shaped (T) dimers. The CCSD(T) data, taken from ref. 9, is estimated to the complete 
basis set (CBS) limit, except where noted by (*). The (*) dimers are est. CCSD(T)/aug-cc-
pVTZ. 

 CCSD(T) (Ref. 9) EFP2   
 ΔE R ΔE R 
(Bz)2 S -1.76 3.9 -2.33 3.9 
Bz-Py S -2.22 3.8 -3.01 3.9 
(Py)2 S1 -1.61 3.8 -2.38 3.9 
(Py)2 S2 -2.95 3.7 -3.85 3.8 
(Bz)2 T -2.73 5.0 -3.01 5.1 
Bz-Py T1 -3.18 4.9 -3.34 5.2 
Bz-Py T2 * -0.64 4.7 0.08 4.8 
Bz-Py T3 -2.20 5.0 -2.53 5.0 
Bz-Py T4 -2.74 5.0 -2.86 5.1 
(Py)2 T1 -2.46 5.0 -2.69 5.0 
(Py)2 T2 * -1.23 4.6 -0.45 4.8 
(Py)2 T3 -2.95 4.9 -2.92 5.1 
(Py)2 T4 * -2.15 5.0 -2.14 5.1 

 

an optimum intermonomer separation 0.1 Å wider than that found with CCSD(T). The EFP2 

optimum separation for (Bz)2 S (3.9 Å) is identical to that found with CCSD(T). 

Compared to the high-level CCSD(T) calculations9, the EFP2 potential energy curves (PECs) 

for the sandwich dimers are deeper (dimers are more strongly bound), by up to ~0.9 

kcal/mol. EFP2 and CCSD(T) predict a similar trend in the PEC ordering of the sandwich 

dimers (Fig. 4.5). A slight difference occurs where the EFP2 PEC for (Py)2 S1 drops below 

that of (Bz)2 S; CCSD(T) calculations predict that the benzene sandwich dimer is always 

more strongly bound than (Py)2 S1. The EFP2 potential energy minimum for (Py)2 S1 is 

found to be -2.38 kcal/mol at a vertical separation of 3.9 Å, while that of the benzene 

sandwich dimer is -2.33 kcal/mol at 3.9 Å. With CCSD(T), (Py)2 S1 has a potential minimum 

of -1.61 kcal/mol at 3.8 Å and (Bz)2 S has a minimum of -1.76 kcal/mol at 3.9 Å.9 

The root mean square deviation (RMSD) and maximum absolute (unsigned) 

difference in energy (MAX) between the EFP2 PEC and the corresponding CCSD(T) PEC 

for each sandwich structure are shown in Table 4.2. For each set of PECs, these values were 

computed on a subset of the PEC data beginning from the first negative (attractive) binding 

energy found with EFP2 and ending with the final computed binding energy at 7.0 Å. This  
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Fig. 4.5.  Est. CCSD(T)/CBS9 (left) and EFP2 (right) potential energy curves for the 
sandwich configurations. Interaction energy is in kcal/mol. 
 
(A) 

 
(B) 

 
Fig. 4.6.  Est. CCSD(T)/CBS9 (left) and EFP2 (right) potential energy curves for the 
benzene-pyridine (A) and pyridine (B) T-shaped dimers. Interaction energy is in kcal/mol. 
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Table 4.2. Comparison of EFP2 and high-level ab initio potential energy curves. Root mean 
square deviation (RMSD) and maximum absolute (unsigned) energy difference (MAX) of 
EFP2 potential energy curves (PECs) compared to the high-level ab initio PECs of ref. 9. For 
sandwich (S), T-shaped (T), and hydrogen bonded dimers, the reference PECs were 
computed with CCSD(T) estimated to the complete basis set (CBS) limit, except where noted 
by (*). The (*) dimers are est. CCSD(T)/aug-cc-pVTZ. For parallel displaced dimers, the 
reference PECs were computed with SCS-MP2/aug-cc-pVTZ. Values are in kcal/mol. 

 RMSD MAX 
(Bz)2 S 0.39 0.59 
Bz-Py S 0.53 0.84 
(Py)2 S1 0.52 0.80 
(Py)2 S2 0.66 1.08 
(Bz)2 T 0.61 1.72 
Bz-Py T1 0.64 1.97 
Bz-Py T2 0.65 1.34 
Bz-Py T3 0.31 0.47 
Bz-Py T4 0.40 1.16 
(Py)2 T1 0.34 1.03 
(Py)2 T2 0.54 1.06 
(Py)2 T3 0.64 1.94 
(Py)2 T4 0.27 0.92 
(Bz)2 P1a 0.70 1.31 
(Bz)2 P1b 0.75 1.31 
Bz-Py P1a 0.55 0.95 
Bz-Py P1b 0.48 0.96 
(Py)2 P1a 0.40 0.68 
(Py)2 P1b 0.44 0.94 
(Py)2 P2a 0.47 0.87 
(Py)2 P2b 0.39 0.83 
(Py)2 H-
bonded * 0.33 0.50 

 

subset was chosen to give the most meaningful comparison between EFP2 and CCSD(T), 

since the EFP2 PECs are significantly more repulsive than the CCSD(T) PECs at short 

intermonomer separations (closer than ~3.6 Å for the sandwich dimers). The (Bz)2 S PEC is 

in the closest agreement with CCSD(T), having the lowest RMSD (0.39 kcal/mol) and lowest 

MAX (0.59 kcal/mol). The greatest RMSD (0.66 kcal/mol) and MAX (1.08 kcal/mol) 

correspond to the (Py)2 S2 PEC. 

The EFP2 and SAPT2 contributions to the sandwich interaction energies at an 

intermonomer separation of 3.8 Å are summarized in Table 4.3. Since this is the distance at 

which the SAPT analyses are available9, it was chosen for consistency. Consequently, the 

EFP2 total interaction energies that are listed in Tables 4.1 and 4.3 are different. Those in  



www.manaraa.com

 74 

Table 4.3. EFP2 and SAPT2 contributions to the interaction energy of the sandwich 
configurations of benzene, benzene-pyridine, and pyridine dimers. All sandwich dimers held 
at vertical separation R = 3.8 Å. Energies in kcal/mol. SAPT2 data, taken from ref. 9, 
calculated with the aug-cc-pVDZ’ basis set. 

 Coulomb Pol 
Exch-
Rep Dispersion Total 

(Bz)2 S SAPT2 -0.48 -0.28 4.52 -5.68 -1.92 
EFP2 -0.26 -0.36 4.38 -5.93 -2.17 

Bz-Py S SAPT2 -0.80 -0.26 4.00 -5.34 -2.40 
EFP2 -0.86 -0.27 3.66 -5.53 -3.00 

(Py)2 S1 SAPT2 -0.05 -0.21 3.57 -5.00 -1.69 
EFP2 -0.25 -0.18 3.26 -5.19 -2.36 

(Py)2 S2 SAPT2 -1.29 -0.25 3.49 -5.00 -3.05 
EFP2 -1.57 -0.20 3.08 -5.16 -3.85 

 

Table 4.1 are more quantitatively meaningful, since they correspond to potential energy 

minima on the respective potential energy surfaces.  The predominant attractive term in 

sandwich dimer interactions is the dispersion energy, due to direct overlap of the π electron 

clouds. However, this overlap also produces a large exchange-repulsion energy. Compared to 

benzene, pyridine has a more contracted, less polarizable π cloud. This causes dispersion 

interactions among pyridine-containing sandwich dimers to be slightly less favorable to 

binding, but it also decreases the magnitude of the exchange-repulsion term. As shown in 

Table 4.3, the (Py)2 sandwich configurations have dispersion energies that are approximately 

0.3 kcal/mol higher (less stabilized) than those of the Bz-Py sandwich dimer, which in turn 

has a dispersion energy that is approximately 0.3 kcal/mol (with SAPT2) or 0.4 kcal/mol 

(with EFP2) higher than the (Bz)2 sandwich dimer. However, the exchange-repulsion energy 

is reduced accordingly. Overall, this decrease in the exchange-repulsion interaction energy 

makes pyridine-containing sandwich dimers more likely to be more strongly bound than the 

benzene sandwich dimer, despite the concomitant decrease in favorable dispersion 

interactions.  

The exception to the above analysis is (Py)2 S1, which is the least strongly bound 

sandwich dimer except at short intermonomer distances (R ≤ 3.6 Å with estimated 

CCSD(T)/CBS; R ≤ 3.9 Å with EFP2), where it becomes slightly more strongly bound than 

the benzene sandwich dimer. Even though the dispersion and exchange-repulsion terms 

associated with (Py)2 S1 follow the trends described above, the Coulomb term is only 
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marginally favorable to binding, due to parallel dipole-dipole interactions. The Coulomb 

term in (Py)2 S1 contributes only -0.05 kcal/mol (SAPT2) or -0.25 kcal/mol (EFP2) to the 

total interaction energy at an intermonomer separation R = 3.8 Å. This is less than or equal to 

the Coulomb term in the benzene dimer, which is -0.48 kcal/mol (SAPT2) or -0.26 kcal/mol 

(EFP2) at R = 3.8 Å. In contrast, (Py)2 S2, which has antiparallel dipole-dipole interactions, 

exhibits a significantly stronger Coulomb interaction of -1.29 kcal/mol (SAPT2) or -1.57 

kcal/mol (EFP2) at the same separation. The Coulomb term in Bz-Py S falls in between that 

of (Bz)2 S and (Py)2 S1 at both the SAPT2 and EFP2 levels of theory (Table 4.3).  

T-shaped.  The interaction energies for the T-shaped dimers are also listed in Table 

4.1. The absolute differences between EFP2 and CCSD(T) energies (Table 4.1) for the T-

shaped dimers range from 0.01 kcal/mol ((Py)2 T4) to 0.78 kcal/mol ((Py)2 T2). As with the 

sandwich structures, EFP2 tends to favor a slightly larger (0.1-0.2 Å) intermonomer 

separation for the T-shaped dimers compared to CCSD(T). For one dimer (Bz-Py T1), EFP2 

finds an optimum separation 0.3 Å wider than CCSD(T); for two dimers (Bz-Py T3 and (Py)2 

T1), EFP2 and CCSD(T) optimum intermonomer separations agree exactly.  

As described in ref. 9, binding in the T-shaped dimers is stabilized by the Coulomb 

energy due to the role of pyridine as a “π-hydrogen bond” donor. By pulling electron density 

away from the hydrogen atom that is para to the heteroatom, the heteroatom in pyridine gives 

this para hydrogen a greater positive charge compared to its value in benzene. The Coulomb 

contribution to the binding energy in the pyridine-containing T-shaped dimers comes largely 

from the interaction of the positive para hydrogen atom on one monomer with the negative π 

cloud of the other monomer ring. The same change in electron density that makes the 

pyridine para hydrogen more positive also makes the pyridine π cloud less diffuse, 

decreasing its ability to act as a “π-hydrogen bond” acceptor. This is reflected in the lower 

(in magnitude) binding energies of (Py)2 T1 and T4 complexes relative to the corresponding 

Bz-Py T-shaped complexes. 

The contributions to the T-shaped interaction energies follow a similar pattern to 

those for the sandwich isomers, as illustrated in Table 4.4. Note that, as discussed above in 

regard to Table 4.3, the distances used for the analysis in Table 4.4 are different from those in 

Table 1, and therefore, the total interaction energies differ as well. While the dispersion  
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Table 4.4. EFP2 and SAPT2 contributions to the interaction energy of the T-shaped 
configurations of benzene, benzene-pyridine, and pyridine dimers. Monomer center to 
monomer center distance R given in Å. Energies given in kcal/mol. SAPT2 data, taken from 
ref. 9, calculated with the aug-cc-pVDZ’ basis set. 

 R Coulomb Pol 
Exch-
Rep Dispersion Total 

(Bz)2 T SAPT2 5.0 -1.75 -0.52 3.52 -3.73 -2.48 
EFP2   -2.94 -0.35 5.04 -4.59 -2.84 

Bz-Py T1 SAPT2 5.0 -2.12 -0.64 3.54 -3.70 -2.92 
EFP2   -3.32 -0.45 4.94 -4.34 -3.17 

Bz-Py T2 SAPT2 4.7 0.33 -0.62 3.38 -3.75 -0.66 
EFP2   1.97 -0.59 3.10 -4.35 0.13 

Bz-Py T3 SAPT2 5.0 -1.21 -0.40 3.27 -3.51 -1.85 
EFP2   -1.77 -0.15 3.07 -3.68 -2.53 

Bz-Py T4 SAPT2 5.0 -1.80 -0.49 3.21 -3.36 -2.44 
EFP2   -2.06 -0.29 2.91 -3.36 -2.80 

(Py)2 T1 SAPT2 5.0 -1.39 -0.50 3.29 -3.48 -2.08 
EFP2   -2.00 -0.23 3.04 -3.50 -2.69 

(Py)2 T2 SAPT2 4.7 -0.39 -0.54 3.17 -3.53 -1.29 
EFP2   1.14 -0.56 3.74 -4.70 -0.38 

(Py)2 T3 SAPT2 5.0 -1.78 -0.38 2.67 -3.11 -2.60 
EFP2   -2.11 -0.23 3.12 -3.61 -2.83 

(Py)2 T4 SAPT2 5.0 -1.14 -0.38 2.78 -3.12 -1.86 
EFP2   -1.10 -0.19 2.34 -3.15 -2.10 

 

energy is the largest attractive energy term for the T-shaped dimers (Table 4.4), the 

exchange-repulsion energy generally has a similar magnitude. The Coulomb term 

consequently makes significant contributions to the overall binding energy. When the 

Coulomb term is least attractive or is even repulsive (T2 complexes, in which the partially 

negative heteroatom interacts most directly with the π cloud of the other monomer ring), the 

complex may be very weakly bound, or not bound at all. EFP2 predicts a more repulsive 

Coulomb interaction in the T2 complexes compared to SAPT2, and therefore a more weakly 

bound dimer. Because the EFP2 Bz-Py T2 Coulomb interaction is more than 1 kcal/mol 

larger than that predicted by SAPT29, EFP predicts this species to be unbound, whereas it is 

slightly (0.66 kcal/mol) bound according to SAPT2. EFP2 predicts (Py)2 T2 to be more 

weakly bound than does SAPT2 for similar reasons. As shown in Table 1, the estimated 

CCSD(T) interaction energies are similar to those predicted by SAPT2.  For the other T 

complexes, EFP2 and SAPT2 are in good agreement, within ~0.2 to 0.6 kcal/mol (Table 4.4), 

with the EFP2 dimers more strongly bound. Each of the contributing interactions is also in 
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good agreement. In these dimers, EFP2 tends to overestimate the Coulomb attraction to some 

degree compared to SAPT2 and to slightly (~0.2 kcal/mol) underestimate the magnitude of 

the polarization. 

A comparison of the CCSD(T)9 and EFP2 PECs for the T-shaped dimers is shown in 

Fig. 4.6. The EFP2 curves tend to be somewhat deeper (more strongly bound) and slightly 

right-shifted (larger intermonomer separation) compared to the CCSD(T) curves. This is 

consistent with the results of previous EFP2 studies on benzene5 and substituted benzene7 

dimers. The ordering of the EFP2 and CCSD(T) curves is very similar, although EFP2 

overbinds the T-shaped benzene dimer somewhat more than it does the other T-shaped 

dimers, resulting in some minor differences. The CCSD(T) Bz-Py T4 curve, for example, 

nearly coincides with the CCSD(T) (Bz)2 T curve, while the EFP2 (Bz)2 T curve is slightly 

deeper than that of Bz-Py T4. Similarly, whereas CCSD(T) shows the (Bz)2 T curve always 

above (Py)2 T4, the two nearly coincide when EFP2 is used. 

RMSD values and maximum energy differences (MAX) between EFP2 and CCSD(T) 

T-shaped dimer PECs appear in Table 4.2. As with the sandwich dimers, these statistics were 

calculated on a subset of data beginning from the first negative (attractive) EFP2 binding 

energy for each dimer and ending with the final computed binding energy (at 8.0 Å for T-

shaped dimers). In the case of Bz-Py T2, for which EFP2 finds no net binding, statistics were 

calculated beginning with the first attractive CCSD(T) binding energy. (Py)2 T4 shows the 

best agreement between EFP2 and CCSD(T) curves, with a RMSD of 0.27 kcal/mol and a 

MAX of 0.92 kcal/mol. (Bz)2 T, Bz-Py T1, Bz-Py T2, and (Py)2 T3 show the greatest 

discrepancy between their EFP2 and CCSD(T) PECs, with RMSDs in the range of 0.61-0.65 

kcal/mol. The greatest maximum difference between EFP2 and CCSD(T) energies (1.97 

kcal/mol) is found in the Bz-Py T1 dimer. However, much of the difference between EFP2 

and CCSD(T) energies results from EFP2 under-binding at short (equilibrium distance minus 

0.4 Å, or less) intermonomer separations. If RMSDs and maximum energy differences are 

calculated beginning from 0.3 Å closer than the EFP2 equilibrium distance, for example, the 

Bz-Py T1 dimer’s RMSD decreases from 0.64 to 0.39 kcal/mol and the MAX decreases from 

1.97 to 0.53 kcal/mol. 
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 (A) 

 
(B) 

 
Fig. 4.7.  SCS-MP2/aug-cc-pVTZ9 (left) and EFP2 (right) potential energy curves for the 
parallel displaced dimers with a vertical separation R = 3.5 Å. (A) “Over vertex” displaced 
dimers, in which the displacement is over the heteroatom. (B) “Edgewise” displaced dimers, 
in which the displacement is over the C-C bond of carbons 2 and 3. Interaction energy is in 
kcal/mol. 
 

Parallel displaced. Potential energy curves for the parallel displaced dimers are 

shown in Fig. 4.7, where EFP2 interaction energies are compared with SCS-MP2/aug-cc-

pVTZ interaction energies from ref. 9. These curves correspond to parallel displaced dimers 

with a vertical displacement held fixed at R = 3.5 Å while the horizontal displacement, H,  

was varied in increments of 0.2 Å. Interaction energies and horizontal displacements of the 

most favorable of these structures appear in Table 4.5.  The absolute energy differences 

between EFP2 and SCS-MP2 for these parallel displaced structures (Table 4.5) range from 
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0.14 kcal/mol ((Py)2 P2b) to 0.86 kcal/mol ((Bz)2 P1b), with an average difference of 0.50 

kcal/mol. 

RMSD values and maximum absolute energy differences between EFP2 and SCS-

MP2 PECs for the parallel displaced dimers can be found in Table 4.2. Of the EFP2 parallel 

displaced PECs, those for the benzene dimers ((Bz)2 P1a and (Bz)2 P1b) differ the most from 

the corresponding SCS-MP2 PECs, having RMSDs of 0.70 and 0.75 kcal/mol respectively. 

The maximum absolute energy difference is 1.31 kcal/mol for both (Bz)2 PECs. RMSD 

values for the pyridine-containing parallel displaced dimers are lower, ranging from 0.39 

kcal/mol ((Py)2 P2b) to 0.55 kcal/mol (Bz-Py P1a). The maximum energy differences for 

pyridine-containing dimers are all under 1 kcal/mol, with (Py)2 P1a having the lowest 

maximum difference at 0.68 kcal/mol. 

 

Table 4.5. EFP2 and SCS-MP2 interaction energies of parallel displaced configurations of 
benzene, benzene-pyridine, and pyridine dimers. Vertical displacement R = 3.5 Å. Horizontal 
displacement H given in Å. Energies given in kcal/mol. SCS-MP2/aug-cc-pVTZ data from 
ref. 9. 

 H SCS-MP2 EFP2 
(Bz)2 P1a 1.6 -2.71 -1.90 
(Bz)2 P1b 1.6 -2.70 -1.84 
Bz-Py P1a(+) 1.4 -2.36 -1.88 
Bz-Py P1a(-) 1.6 -3.23 -2.43 
Bz-Py P1b 1.6 -3.14 -2.71 
(Py)2 P1a 1.6 -2.24 -1.85 
(Py)2 P1b 1.6 -2.54 -2.31 
(Py)2 P2a(+) 1.4 -2.78 -2.44 
(Py)2 P2a(-) 1.2 -3.70 -3.21 
(Py)2 P2b 1.4 -3.80 -3.94 

 

Changes in the curvature of EFP2 potential energy curves for the parallel displaced 

structures (Fig. 4.7) can be seen at horizontal separations in the range of 2-4 Å (and -2 to -4 

Å). In some cases, these curvature changes give rise to small dips in the potential energy 

surface that do not correspond to features on the SCS-MP2 potential energy curves (Fig. 4.7). 

However, the dips are well above the minimum energies found along these curves, and the 

overall correspondence between the EFP2 and SCS-MP2 curves is strong (Table 4.2). 

The most favorable structure, predicted by both EFP2 and SCS-MP29, is (Py)2 P2b, 

due to its antiparallel dipoles. For all other parallel displaced structures around their energy 
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minima, EFP2 predicts a somewhat smaller binding energy than does SCS-MP2, but EFP2 

slightly overbinds the (Py)2 P2b structure by ~0.14 kcal/mol. The next most favorable 

parallel displaced configuration, (Py)2 P2a(-), is about 0.2 (0.7) kcal/mol higher in energy 

according to SCS-MP2 (EFP2). The Bz-Py P1a(-) and Bz-Py P1b complexes are next lowest 

in energy. Both SCS-MP2 and EFP2 predict these two dimers to be very close to each other 

in energy. While SCS-MP2 predicts that (Py)2 P1a and (Py)2 P1b have a smaller binding 

energy than (Bz)2 P1a and (Bz)2 P1b, respectively (due to parallel dipoles), EFP2 under-

binds the (Bz)2 dimers and reverses this energy ordering.  

EFP2 tends to favor a slightly larger (0.05 - 0.25 Å) intermonomer separation in 

sandwich-type structures: it underestimates the Coulomb attraction and overestimates the 

exchange-repulsion at shorter distances.5,7 (See also the optimal intermonomer distances 

listed in Table 4.1.) It was demonstrated previously5 that EFP2 will produce parallel 

displaced benzene dimer interaction energies that are closer to the CCSD(T) values when the 

EFP2 structures are allowed to relax to their slightly more separated equilibrium values. For 

example, a previous comparison5 with CCSD(T) potential energy curves for the parallel 

displaced benzene dimer30 shows that the (Bz)2 equilibrium geometry is R = 3.6 Å, H = 1.6 Å 

with CCSD(T) but R = 3.8 Å, H = 1.2 Å with EFP2. As a result, the EFP2 curve at R = 3.4 Å 

lies 2.5 - 4.0 kcal/mol higher in energy than the CCSD(T) curve. However, the EFP2 curve at 

R = 3.8 Å follows the corresponding CCSD(T) curve very closely.5 The same may be true for 

heteroatom-containing dimers as well.  

EFP2 and SAPT2 energy decompositions for the parallel displaced configurations 

with vertical displacement R = 3.4 Å and horizontal displacement H = 1.6 Å are given in 

Table 4.6. In light of the above discussion, this intermonomer separation may be well below 

the optimal separation found with EFP2; consequently, the agreement here with SAPT2 is 

not as favorable, but this is the only intermonomer separation for which the SAPT analysis is 

available. Compared to SAPT2, EFP2 tends to underestimate the Coulomb attraction in these 

dimers by about 0.5 kcal/mol. The closest agreement is in (Py)2 P2b, where the EFP2 

underestimation is 0.28 kcal/mol, and the greatest difference is in (Py)2 P2a(+), with an EFP2 

underestimation of 1.22 kcal/mol. The EFP2 polarization attraction is about half that of the 

SAPT2 polarization. EFP2 overestimates the exchange-repulsion of the (Bz)2 dimers by more 
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than 1 kcal/mol. These dimers are the least strongly bound and have an EFP2 total interaction 

energy differing from the SAPT2 total interaction energy by about 2 kcal/mol (less strongly 

bound with EFP2). The EFP2 and SAPT2 comparisons for Bz-Py P1a(-) and (Py)2 P2a(-) are 

similar, with an exchange-repulsion 0.96 kcal/mol and 0.87 kcal/mol (respectively) higher 

with EFP2 and a total interaction energy 1.87 kcal/mol and 1.72 kcal/mol (respectively) less 

strongly bound with EFP2. Otherwise, the EFP2 total interaction energies differ from those 

of SAPT2 by less than 1.4 kcal/mol. EFP2 dispersion energies are in excellent agreement 

with SAPT2, being consistently about 0.2 kcal/mol more attractive. 

 

Table 4.6. EFP2 and SAPT2 contributions to the interaction energy of the parallel displaced 
configurations of benzene, benzene-pyridine, and pyridine dimers. Vertical displacement R = 
3.4 Å, horizontal displacement H = 1.6 Å. Energies given in kcal/mol. SAPT2 data from ref. 
9. 

 Coulomb Pol 
Exch-
Rep Dispersion Total 

(Bz)2 P1a SAPT2 -2.77 -0.88 8.58 -7.88 -2.95 
EFP2 -2.09 -0.47 9.70 -8.12 -0.98 

(Bz)2 P1b SAPT2 -2.81 -0.91 8.68 -7.88 -2.92 
EFP2 -2.10 -0.47 9.79 -8.12 -0.90 

Bz-Py P1a(+) SAPT2 -1.91 -0.73 7.24 -7.16 -2.55 
EFP2 -1.01 -0.36 7.60 -7.39 -1.16 

Bz-Py P1a(-) SAPT2 -3.24 -0.85 8.25 -7.59 -3.43 
EFP2 -2.60 -0.38 9.21 -7.79 -1.56 

Bz-Py P1b SAPT2 -2.95 -0.81 7.77 -7.38 -3.37 
EFP2 -2.49 -0.36 8.45 -7.62 -2.02 

(Py)2 P1a SAPT2 -1.74 -0.68 6.97 -6.90 -2.35 
EFP2 -1.05 -0.27 7.15 -7.07 -1.24 

(Py)2 P1b SAPT2 -2.04 -0.66 7.01 -6.93 -2.62 
EFP2 -1.63 -0.25 7.32 -7.16 -1.71 

(Py)2 P2a(+) SAPT2 -1.78 -0.66 5.90 -6.46 -2.99 
EFP2 -0.56 -0.33 5.64 -6.68 -1.93 

(Py)2 P2a(-) SAPT2 -3.54 -0.79 7.93 -7.30 -3.70 
EFP2 -3.01 -0.28 8.80 -7.48 -1.98 

(Py)2 P2b SAPT2 -3.26 -0.70 6.85 -6.89 -4.00 
EFP2 -2.98 -0.26 7.08 -7.13 -3.30 

 

Hydrogen bonded.  EFP2 agrees well with the estimated CCSD(T)/aug-cc-pVTZ 

results of ref. 9 for the hydrogen-bonded dimer. The H-bonded dimer is illustrated in Figure 

4.4, and the potential energy curves are shown in Figure 4.8. For potential energies between 

5.4 Å and 10 Å, the maximum energy difference between the EFP2 and CCSD(T) values is 
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0.50 kcal/mol (Table 4.2). The root mean square deviation between the two PECs is 0.33 

kcal/mol (Table 4.2).  Est. CCSD(T)/aug-cc-pVTZ finds the potential minimum for the 

hydrogen-bonded dimer to be -3.56 kcal/mol at an intermonomer separation (ring center to 

ring center distance) of 5.8 Å, corresponding to hydrogen bond distances of 2.5 Å. EFP2 

finds the minimum to be -3.3 kcal/mol at the same intermonomer separation. At this energy 

minimum, the Coulomb term is -3.62 kcal/mol, the exchange repulsion 3.95 kcal/mol, the 

polarization is -0.64 kcal/mol, and the dispersion is -2.99 kcal/mol with EFP2. The 

magnitude of the exchange-repulsion exceeds that of the Coulomb term by 0.3 kcal/mol. 

Thus, although the hydrogen bonded configuration exhibits the smallest dispersion 

interaction in terms of magnitude (compared to the dispersion interaction of the sandwich 

and T-shaped complexes given in Tables 4.3-4.4), the dispersion energy is necessary for the 

overall binding of this complex.  

 
Fig. 4.8.  Est. CCSD(T)/aug-cc-pVTZ9 and EFP2 potential energy curves for the hydrogen 
bonded pyridine dimer. Interaction energy is in kcal/mol. 
 

Monte Carlo/Simulated Annealing (MC/SA). The primary focus of this 

investigation has been on the pyridine and benzene-pyridine structures that have been most 

commonly studied by high-level electronic structure methods. However, the accuracy and 

computational efficiency of the EFP method suggests that an extensive search for other 
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minima should be carried out. Consequently, a series of Monte Carlo/simulated annealing 

(MC/SA) searches were performed.  

Important structural motifs found with the EFP2 MC/SA simulations for the benzene-

pyridine and pyridine dimers are shown in Figs. 4.9 and 4.10, respectively. Except where 

noted otherwise, all structures have positive definite Hessians (matrices of second derivatives 

of the energy with respect to the geometry), indicating that they are minima on the potential 

energy surface. Very tight gradient convergent criteria were employed for the geometry 

optimizations. Interaction energies for these structures and the intermonomer distances R1 

and R2 indicated in Figs. 4.9 and 4.10 appear in Table 4.7. R1 is the distance between ring 

centers for all geometries shown. For the lowest energy structures (4.9A, 4.10A), R2 is the 

distance between the pyridine heteroatom and the nearest carbon-carbon bond midpoint on 

the other monomer. The definition of R2 for other geometries is given in Figs. 4.9 and 4.10. 

The lowest energy geometries for Bz-Py and (Py)2 are very similar (Figs. 4.9A and 

4.10A). Both structures are found to involve the negatively charged pyridine heteroatom 

interacting with the positive hydrocarbon backbone of the second monomer. The distance 

from the pyridine nitrogen to the nearest C-C bond midpoint on the other monomer (R2) is 

3.09 Å for Bz-Py and 3.06 Å for (Py)2. In the Bz-Py lowest energy structure, a line bisecting 

the pyridine ring through the heteroatom would form a 155° angle with the line given by R. 

The (Py)2 lowest energy structure has a similar configuration, in which this angle is 156°. A 

Bz-Py structure in which this angle is 180° (Fig. 4.9B) was found with EFP2 MC/SA (R = 

3.10 Å). This structure, which is 0.43 kcal/mol higher in energy than the minimum energy 

structure, has one imaginary frequency (23.83 cm-1), indicating that the structure in Fig. 4.9B 

is a transition state between two symmetry-equivalent minima of the Bz-Py dimer. No 

structure similar to Fig. 4.9B was found by the MC/SA simulations for the (Py)2 dimer. 
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Fig. 4.9.  Selected structures found with EFP2 Monte Carlo/simulated annealing (MC/SA) 
for the benzene-pyridine dimer, in order of strongest to weakest interaction energy. (A) is the 
lowest energy structure observed. (B) is a transition state between two symmetry-equivalent 
structures like (A). (C), (D), and (F) are T-like structures, while (E) is a twisted parallel-
displaced-type structure. Two views of (E) are shown to illustrate the relative orientation of 
the monomers. R1 indicates the distance between monomer centers. For (A) and (B), R2 
indicates the distance between the pyridine heteroatom and the midpoint of the nearest 
benzene carbon-carbon bond. For (C), (D), and (F), R2 is the distance from a ring center of 
one monomer to the nearest hydrogen atom on the other monomer. For (E), R2 is the distance 
from the pyridine heteroatom to the nearest benzene hydrogen. Distances and interaction 
energies of all complexes appear in Table 4.7, while interaction energy components of global 
minimum structure (A) appear in Table 4.8. 
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Fig. 4.10. Selected structures found with EFP2 Monte Carlo/simulated annealing (MC/SA) 
for the pyridine dimer, in order of strongest to weakest interaction energy. (A) is the lowest 
energy structure observed. (B) and (C) are parallel displaced type structures. (D), (E), and 
(G) are T-like structures. (F) is a nonplanar hydrogen bonded structure. R1 indicates the 
distance between monomer centers. For (A), R2 indicates the distance between the pyridine 
heteroatom and the midpoint of the nearest benzene carbon-carbon bond. For (D), (E), and 
(G), R2 is the distance from a ring center of one monomer to the nearest hydrogen atom on 
the other monomer. For (F), R2 indicates the length of the hydrogen bond. For (B) and (C), 
an R2 value is not defined. Distances and interaction energies of all complexes appear in 
Table 4.7, while interaction energy components of global minimum structure (A) appear in 
Table 4.8. 
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 Table 4.7. EFP2 interaction energies and intermonomer distances of selected Bz-Py and 
(Py)2 structures found with EFP2 Monte Carlo/simulated annealing (MC/SA). Interaction 
energies ΔE (kcal/mol) and intermonomer distances R1 and R2 (Å) of the structures shown in 
Fig. 4.9-4.10. R1 is the distance between monomer centers in all cases. R2 is defined in Fig. 
4.9-4.10 for each structure. 

 R1 R2 ΔE 
Bz-Py       

A 5.55 3.09 -4.68 
B 5.71 3.10 -4.25 
C 4.96 2.64 -3.63 
D 4.98 2.65 -3.60 
E 3.87 3.64 -3.46 
F 4.94 2.56 -3.19 

(Py)2       
A 5.53 3.06 -5.39 
B 3.80  -4.23 
C 3.79  -4.11 
D 4.93 2.61 -4.10 
E 4.96 2.63 -3.83 
F 5.55 2.44 -3.70 
G 4.92 2.65 -3.67 

 

The EFP2 interaction energy components for the lowest energy geometries found 

with the MC/SA simulations (Fig. 4.9A, 4.10A) are given in Table 4.8. Both structures have 

exchange-repulsion terms of approximately 6.5 kcal/mol, and have correspondingly large 

Coulomb interaction terms as well: -6.10 kcal/mol for Bz-Py MC/SA, -6.85 kcal/mol for 

(Py)2 MC/SA (Table 7). Due to the angle between the monomers (described above), which 

brings the ortho hydrogen of pyridine closer to the π cloud of the other monomer, the 

dispersion interaction energy is also large for these structures. This creates a “π -hydrogen 

bond” effect similar to that which occurs in the T-shaped dimers. The dispersion energy of 

the Bz-Py global minimum structure 9A (-4.33 kcal/mol, Table 4.7) is approximately the 

same as that of Bz-Py T1 (-4.34 kcal/mol) or Bz-Py T2 (-4.35 kcal/mol, Table 4.4). The 

dispersion energy of the (Py)2 global minimum structure is a very similar -4.34 kcal/mol 

(Table 4.7), greater than that of any (Py)2 T-shaped structures except (Py)2 T2 (-4.70 

kcal/mol, Table 4.4). Thus, while the Coulomb term is the single largest attractive energy 

term for Bz-Py 4.9A, the structure would not be bound without the dispersion interaction. 

The (Py)2 lowest energy structure 10A is very similar to that found for Bz-Py. Overall, (Py)2 

4.10A is 0.71 kcal/mol more strongly bound than Bz-Py 4.9A, due mainly to a larger 
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Coulomb attraction. While the (Py)2 10A structure would still be weakly bound without the 

dispersion interaction, the dispersion interaction does contribute -4.34 kcal/mol to the 

binding energy. 

 

Table 4.8. EFP2 energy contributions to the global minimum benzene-pyridine and pyridine 
dimer structures found with EFP2 Monte Carlo/simulated annealing. Energies in kcal/mol. 

 Coulomb Pol Exch-Rep Dispersion Total 
Bz-Py MC/SA -6.10 -0.68 6.43 -4.33 -4.68 
(Py)2 MC/SA -6.85 -0.79 6.59 -4.34 -5.39 

 

For the Bz-Py dimer, in addition to the lowest energy structure 4.9A and the transition 

state 9B, structures resembling T-shaped (Fig. 4.9C,D,F) and parallel displaced (Fig. 4.9E) 

motifs were also found. The T-like structure 4.9C resembles Bz-Py T4, although the ring 

center of pyridine does not lie directly over the ring center of benzene as in the artificially 

constrained Bz-Py T4. In structure 4.9C, the meta carbon of pyridine is closest to the benzene 

ring center. The T-like structure 4.9D is similar to 4.9C, but the para carbon of pyridine lies 

most directly over the benzene ring center. Structures 4.9C and 4.9D are nearly degenerate in 

energy, differing by only 0.03 kcal/mol. They are, respectively, 1.05 kcal/mol and 1.08 

kcal/mol higher in energy than the lowest energy structure 4.9A (Table 4.7). The parallel 

displaced structure 4.9E most closely resembles Bz-Py P1b, although the monomers in 4.9E 

are rotated compared to their orientation in Bz-Py P1b. This dimer configuration is 1.22 

kcal/mol less strongly bound than the lowest energy configuration 4.9A (Table 4.7). Finally, 

the T-like structure 4.9F is most similar to Bz-Py T3, in that a benzene hydrogen atom lies 

over the pyridine ring. However, compared to its orientation in Bz-Py T3, the benzene in 9F 

is rotated 90° relative to pyridine. Also, as with the other T-like structures, the ring centers do 

not lie directly over one another. This structure is 1.49 kcal/mol higher in energy than the 

minimum energy structure 4.9A (Table 4.7).  

Due to the lower symmetry of pyridine compared to benzene, the potential energy 

surface of (Py)2 is even more diverse than that of Bz-Py. A selection of unique structures 

found with MC/SA are shown in Fig. 4.10, with structure 4.10A being the lowest in energy. 

Structures 4.10B and 4.10C are parallel displaced structures with different orientations of the 

pyridine monomers. The more energetically favorable (4.10B) has antiparallel pyridines, 
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similar to (Py)2 P2b, while in the other (4.10C), the pyridine heteroatoms are offset by 90°. 

These structures differ in energy by 0.12 kcal/mol, with the antiparallel structure (4.10B) 

1.16 kcal/mol higher in energy than the minimum energy configuration 10A (Table 4.7). 

Structures 4.10D, 4.10E, and 4.10G are T-shaped type, although the monomers are offset: the 

center of the “top” monomer does not lie directly above the ring plane of the other. Structure 

10G most closely resembles (Py)2 T3, with the “top” monomer displaced over the heteroatom 

of the other. The geometries of 4.10D and 4.10E do not directly correspond to any of the 

constrained T-shaped structures examined previously in this study; in addition to the offset 

monomer centers, the “top” pyridine is rotated ~60° compared to its orientation in otherwise 

similar constrained structures (e.g. (Py)2 T3). The T-shaped structure 4.10D, at -4.10 

kcal/mol, is nearly isoenergetic with the parallel displaced structure 4.10C, at -4.11 kcal/mol 

(Table 4.7). Configurations 4.10D, 4.10E, and 4.10G are respectively 1.29 kcal/mol, 1.56 

kcal/mol, and 1.72 kcal/mol higher in energy than the minimum energy configuration 4.10A 

(Table 4.7). Fig. 4.10F has a nonplanar hydrogen bonded structure. A planar H-bonded 

geometry was not found with the MC/SA simulations, and an EFP2 geometry optimization 

beginning from the geometry of the most energetically favorable planar H-bonded structure 

examined previously in this study yields a second-order saddle point. The nonplanar H-

bonded structure (4.10F) lies 1.69 kcal/mol above the minimum energy geometry (Table 4.7). 

The offset T-shaped (Fig. 4.9C, 4.9D, 4.9F, 4.10D, 4.10E, 4.10G) and parallel 

displaced (4.9E, 4.10B, 4.10C) structures found with the EFP2 MC/SA simulations have 

analogues on the benzene dimer potential energy surface. A previous EFP2 MC/SA study7 

that included the benzene dimer found structures similar to those discussed above. For the 

benzene dimer, the EFP2 lowest energy structure is offset T-shaped, with a monomer center-

to-center distance (R1) of 5.1 Å, and an interaction energy of -2.80 kcal/mol. A parallel 

displaced structure with R1 = 4.0 Å has an interaction energy of -2.41 kcal/mol. Finally, an 

edge-to-edge configuration of the benzene dimer similar to 4.9B, with R1 = 6.2 Å, has an 

interaction energy of -1.53 kcal/mol. These EFP2 results are similar to the findings of a 

previous study23 examining 491 configurations of the benzene dimer. Energies computed 

with MP2/aug-cc-pVTZ + ΔCCSD(T) correction of similar offset T-shaped, parallel 

displaced, and edge-to-edge structures are reported as -2.795 kcal/mol, -2.699 kcal/mol, and -
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1.805 kcal/mol, respectively; these structures are also reported to be true minima, rather than 

saddle points. 

The EFP2 MC/SA results can also be compared with results from a DFT-D study10 of 

the pyridine dimer potential energy surface. A structure similar to 10E and a planar hydrogen 

bonded structure were found with DFT-D.10 The DFT-D structure had a hydrogen-to-ring-

center distance R2 of 2.66 Å [ref. 10] compared to 2.63 Å found by EFP2 (Table 4.7). The 

EFP2 interaction energy for this structure is -3.8 kcal/mol (Table 4.7), compared to -3.1 

kcal/mol with SCS-MP2, -4.2 kcal/mol with MP2, and -3.0 kcal/mol with DFT-D. As noted 

above, EFP2 finds a planar H-bonded structure (with hydrogen bond lengths R2 = 2.44 Å v. 

2.54 Å with the DFT-D10 optimization) that is a second-order saddle point. The authors of the 

DFT-D study performed a full geometry optimization and noted that use of constrained 

monomer geometries altered the results of the study.10 It is possible that the lack of planarity 

of the optimum EFP2 H-bonded structure results from the use of rigid monomers; however, 

no mention is made of Hessian calculations in ref. 10, so it is not known whether the H-

bonded structure reported there is a true minimum. An edge-to-edge structure like the EFP2 

global minimum 4.10A is not reported in the DFT-D study.10 

Cartesian coordinates and interaction energy components for the MC/SA structures 

described above are available online as Supplementary Information. 

 

Conclusions 

 

For dimers of benzene, pyridine, and benzene-pyridine, the general effective fragment 

potential method (EFP2) is in good agreement with the high-level CCSD(T), MP2, and 

SAPT2 results of Hohenstein and Sherrill9. Consistent with previous studies on benzene 

dimers5 and substituted benzene dimers7, EFP2 is found to slightly overestimate binding 

energies and intermonomer separations in sandwich structures and T-shaped structures other 

than those of type T2. EFP2 underestimates the Coulomb attraction in Bz-Py T2 and (Py)2 

T2, resulting in no bound state for the former and a weakly bound minimum for the latter. 

Slight differences in the energy order of the T-shaped dimer curves arise because EFP2 

overbinds the T-shaped benzene dimer slightly more than other T-shaped structures. 
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However, EFP2 underbinds parallel displaced benzene dimers more than it underbinds other 

parallel displaced structures.  

Overall, the differences between EFP2 and CCSD(T) or MP2 are small. The root 

mean square deviation (RMSD) between EFP2 and CCSD(T) potential energy curves for the 

sandwich, T-shaped, and hydrogen bonded dimers is 0.49 kcal/mol, with a range from 0.31 

kcal/mol (Bz-Py T3) to 0.66 kcal/mol ((Py)2 S2). The maximum unsigned difference between 

EFP2 and CCSD(T) energies is 1.08 kcal/mol among sandwich dimers ((Py)2 S2), while it is 

1.97 among T-shaped dimers (Bz-Py T1), for which EFP2 tends to predict a much more rapid 

increase in potential energy at short intermonomer separations than CCSD(T). The RMSD 

between the EFP2 and SCS-MP2 curves for the parallel displaced dimers is 0.52 kcal/mol, 

with a maximum unsigned difference of 1.31 kcal/mol (for both types of parallel displaced 

benzene dimers). On average, the EFP2 potential energy curves for all dimers examined 

differ from the corresponding high-level ab initio curves by just 0.50 kcal/mol. EFP2 also 

provides an energy decomposition that compares well with SAPT2 results, making it an 

attractive method for use with aromatic heterocycles. 

Dispersion and Coulomb interactions are the principal attractive forces in the dimers 

studied. Even in the hydrogen-bonded pyridine dimer, which is expected to be stabilized 

primarily by Coulomb attraction, the exchange-repulsion is of a similar magnitude. A similar 

observation is made for the lowest energy structures found with Monte Carlo/simulated 

annealing. While both the Bz-Py and (Py)2 EFP2 MC/SA minimum-energy geometries 

involve direct interaction between the negatively-charged heteroatom of pyridine and the 

positive carbon backbone of the other monomer, the exchange-repulsion exceeds (in the case 

of Bz-Py) or nearly exceeds (in the case of (Py)2)  the Coulomb attraction. An accurate 

depiction of dispersion energy is necessary to describe the binding of these dimers. 
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CHAPTER 5: INTERACTIONS BETWEEN PAIRED DNA NUCLEOTIDE BASES 

MODELED WITH THE EFFECTIVE FRAGMENT POTENTIAL METHOD 

 

To be submitted to the Journal of Physical Chemistry A 

Q. A. Smith, L. V. Slipchenko, and M. S. Gordon 

 

Abstract 

 

Hydrogen bonded and stacked structures of adenine-thymine and guanine-cytosine 

nucleotide base pairs, along with their methylated analogues, are examined with the ab inito-

based general effective fragment potential (EFP2) method. A comparison with coupled 

cluster with singles, doubles, and perturbative triples (CCSD(T)) energies is presented, along 

with an EFP2 energy decomposition to illustrate the components of the interaction energy.  

 

Introduction 

 

Accurately modeling complexes as large as paired DNA nucleotide bases with ab 

initio methods remains difficult and computationally expensive. The most complete set of 

high-level ab initio calculations on these systems is that of Hobza et al1, performed at the 

estimated coupled cluster with singles, doubles, and perturbative triples (CCSD(T))2 level of 

theory. Hobza’s work provides a benchmark with which to test the accuracy of other 

methods. The general effective fragment potential (EFP2) method,3 is a fast, ab initio-based 

method that has shown success in modeling dimers of benzene,4 benzene-water,5 substituted 

benzenes,6 and pyridine,7 systems with properties similar to DNA. A preliminary report 

employed some EFP2 features to examine stacked adenine-adenine and thymine-thymine 

dimers, as well as hydrogen-bonded adenine-thymine.8 This work expands upon the previous 

study, by using the complete EFP2 method to model both the fundamental hydrogen bonded 

and stacked DNA nucleotide base pairs of guanine-cytosine and methylated adenine-thymine 

and guanine-cytosine. 
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The adenine-thymine (A…T) and guanine-cytosine (G…C) Watson-Crick (WC) or 

hydrogen bonded structures are the canonical nucleotide base pairs. Their methylated 

analogues are denoted mA…mT (9-methyladenine–1-methylthymine) and mG…mC (9-

methylguanine–1-methylcytosine). Multiple hydrogen bonds give these complexes large 

interaction energies that are dominated by Coulomb forces.1 G…C WC and mG…mC WC 

are stabilized by three hydrogen bonds, denoted R1, R2, and R3 in Figs. 5.1A and 5.2A. A…T 

WC and mA…mT WC have two hydrogen bonds, denoted R1 and R2 in Figs. 5.3A and 5.4A. 

When paired in DNA, the oxygen at thymine carbon C2 and the hydrogen at adenine carbon 

C2 (the intermonomer separation labeled R3 in Figs. 5.3A and 5.4A) are too widely separated 

and nonlinear to contribute to hydrogen bonding, although this distance is shown for 

descriptive purposes. 

The stacked nucleotide base structures are more difficult to describe than the 

hydrogen bonded species without resorting to very high levels of theory. The difficulty in 

modeling these structures arises because of the inability of most methods, even the simpler 

electronic structure methods (e.g., Hartree-Fock (HF) and the most commonly used density 

functional theory (DFT) functionals), to accurately portray the dispersion energy.9 Second-

order perturbation theory10 (MP2) is, in addition, known to overestimate the binding energy 

of stacked nucleotide bases by about 20%, relative to the more reliable (and more costly) 

coupled cluster method with single, double and perturbative triple (CCSD(T)) excitations.1,11 

Indeed, the ∆CCSD(T) correction term (the difference between CCSD(T) and MP2 energies) 

is positive for the stacked nucleotide bases, in contrast to the hydrogen-bonded structures for 

which the correction is negative.1 DFT often fails to find any bound nucleotide base pairs 

with a stacked motif,12 although DFT can be made to perform better when dispersion is 

explicitly introduced through parameterization or hybrid methods.13-15 
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Fig. 5.1. Top and side views of the guanine-cytosine hydrogen bonded complex. (A) depicts 
the RI-MP2/cc-pVTZ optimized geometry of ref. 1. (B) is the complex obtained by EFP2 
optimization with the nucleotide base geometries of ref. 1. Hydrogen bond lengths R1, R2, 
and R3, and angles α, β, and γ (chosen to show the linearity of each hydrogen bond) are given 
in Table 5.1 for each complex. 
 

 

 
Fig. 5.2. Top and side views of the methylated guanine-cytosine hydrogen bonded complex. 
(A) depicts the RI-MP2/cc-pVTZ optimized geometry of ref. 1. (B) is the complex obtained 
by EFP2 optimization with the nucleotide base geometries of ref. 1. Hydrogen bond lengths 
R1, R2, and R3 and angles α, β, and γ (chosen to show the linearity of each hydrogen bond) 
are given in Table 5.1 for each complex. 
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Fig. 5.3. Top and side views of the adenine-thymine hydrogen bonded complex. (A) depicts 
the RI-MP2/cc-pVTZ optimized geometry of ref. 1. (B) is the complex obtained by EFP2 
optimization with the nucleotide base geometries of ref. 1. Intermonomer distances R1, R2, 
and R3 and angles α, β, and γ (chosen to show the linearity of each hydrogen bond) are given 
in Table 5.1 for each complex. 
 
 

 
Fig. 5.4. Top and side views of the methylated adenine-thymine hydrogen bonded complex. 
(A) depicts the RI-MP2/cc-pVTZ optimized geometry of ref. 1. (B) is the complex obtained 
by EFP2 optimization with the nucleotide base geometries of ref. 1. Intermonomer distances 
R1, R2, and R3 and angles α, β, and γ (chosen to show the linearity of each hydrogen bond) 
are given in Table 5.1 for each complex. 
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Methods 

 

The general effective fragment potential (EFP2) method is coded in the GAMESS 

(General Atomic and Molecular Electronic Structure System)16 quantum chemistry software 

package, which was used for all calculations in this study. The EFP2 total interaction energy 

is decomposed into Coulomb, exchange-repulsion, polarization (induction), dispersion, and 

charge transfer terms. The Coulomb interaction is calculated using Stone’s distributed 

multipolar expansion,17 carried out through octopole moments. The analytical distributed 

multipolar analysis (DMA) was used in this study, although a numerical DMA18 is also 

available. Charge penetration, required when fragments approach each other closely, is 

modeled by an exponential damping function that multiplies the distributed multipoles, up 

through the dipole-quadrupole term, but not the quadrupole-quadrupole or higher order 

terms.19 Exchange-repulsion is derived as an expansion in the intermolecular overlap, 

truncated at the quadratic term.20 Polarization is represented by the sum of localized 

molecular orbital (LMO) polarizability tensors. Polarizable points are located at the LMO 

centroids, corresponding to the bonds and lone pairs of the molecule. These LMO 

polarizabilities are determined using the coupled-perturbed Hartree-Fock equations.21 The 

dispersion interaction is expressed in terms of imaginary frequency-dependent 

polarizabilities, with an explicitly derived C6 coefficient and an estimated C8 coefficient.21 

Charge transfer, important in systems with charged or highly polar molecules, is computed 

from a perturbative treatment of the interaction between occupied orbitals on one fragment 

and virtual orbitals on a second fragment.22 Charge transfer is not included in the present 

study because a previous study22 demonstrated that this term is very small for most neutral 

molecules. 

Geometries. Two sets of adenine-thymine (A…T) and guanine-cytosine (G…C) 

stacked and hydrogen bonded geometries were examined with the EFP2 method, along with 

two sets of the corresponding methylated structures: 9-methyladenine–1-methylthymine 

(mA…mT) and 9-methylguanine–1-methylcytosine (mG…mC). All EFP2 potentials were 

generated with the analytic DMA23 and the 6-311++G(3df,2p) basis set. EFP2 fragments are 

rigid, having fixed internal geometries.  
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Set 1. The first set of structures was taken directly from the JSCH-2005 benchmark 

data1. The stacked structures chosen for the present study are denoted A…T S, G…C S, 

mA…mT S, and mG…mC S in JSCH-2005; the hydrogen bonded structures are denoted 

A…T WC [Watson-Crick], G…C WC, mA…mT WC, and mG…mC WC. The geometries 

for all of these structures were obtained through optimization with the RI-MP2/cc-pVTZ 

method.1 To analyze these structures with the EFP2 method, EFP potentials were generated 

separately for each nucleotide base. These EFP2 nucleotide bases were then recombined to 

produce paired geometries identical to the JSCH-2005 structures. This set tests the ability of 

the EFP2 method to reproduce estimated CCSD(T) interaction energies1. 

Set 2. The second set of nucleotide base geometries began with the same nucleotide 

bases and EFP2 potentials described in Set 1. However, in this case, instead of constraining 

the nucleotide bases to the paired geometries found with RI-MP2 in ref. 1, an EFP2 geometry 

optimization was performed. This set tests the ability of the EFP2 method to reproduce 

paired geometries. 

Interaction energies.  The estimated CCSD(T) interaction energies are taken from 

ref. 1. In that work, RI-MP2 energies were counterpoise corrected for basis set superposition 

error (BSSE)24 and extrapolated to the complete basis set (CBS) limit by the two-point 

extrapolation scheme of Helgaker et al.25 Small-basis CCSD(T) single point energy 

calculations were performed at the RI-MP2 optimized geometries; the difference between the 

small-basis CCSD(T) energy and the small-basis MP2 energy is the CCSD(T) energy 

correction term, ΔCCSD(T). The final estimated CCSD(T)/CBS interaction energy is given 

by 

! 

"ECBS
CCSD(T ) = "ECBS

MP 2 + "CCSD(T), where 

! 

"CCSD(T) = "ECCSD(T ) #"EMP 2( )small#basis. 
Components of the interaction energy.  A full symmetry adapted perturbation 

theory (SAPT) study of paired nucleotide bases has not been undertaken, to the authors’ 

knowledge. Previous studies combining SAPT with density functional theory (DFT) 

exist,14,15 but a DFT-based treatment of nucleotide base interactions may be insufficient, 

because DFT functionals often perform poorly at modeling dispersion.12 Thus, no definitive 

data exists with which to compare the EFP2 interaction energy components. EFP2 has 

previously been shown to agree closely with SAPT results in systems similar to the paired 
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nucleotide bases examined here (e.g. dimers of benzene,4 substituted benzenes,6 and 

pyridine7). 

 

Results and Discussion 

 

Hydrogen bonded structures. EFP2 geometry optimizations (Set 2) accurately 

predict the structures of the hydrogen bonded complexes. The lengths of the hydrogen bonds 

corresponding to R1, R2, and R3 (Figs. 5.1 and 5.2) or to R1 and R2 (Figs. 5.3 and 5.4) are 

given in Table 5.1. The intermonomer separation R3 is also given in Figs. 5.3 and 5.4, 

although R3 is not a true hydrogen bond. The angles denoted by Greek letters in Figs. 5.1 - 

5.4 are chosen to show the linearity of each hydrogen bond. These values are reported in 

Table 5.1. 

 

Table 5.1. Geometries of hydrogen bonded complexes. Lengths (in Å) and angles (in 
degrees) of the hydrogen bonds in the Watson-Crick (WC) complexes of Figs. 1 - 4. “Opt 
type” refers to the level of theory used for the geometry optimization, either RI-MP2 [ref. 1] 
or EFP2. Lengths are indicated by A, B, and C in Figs. 5.1 and 5.2 for guanine-cytosine 
(G…C) and methylated guanine-cytosine (mG…mC) and by A and B in Figs. 5.3 and 5.4 for 
adenine-thymine (A…T) and methylated adenine-thymine (mA…mT). For A…T and 
mA…mT, intermonomer separation C is also given, although it is not a true hydrogen bond. 

 
opt 
type R1 R2 R3 α β γ 

G…C WC MP2 1.76 1.91 1.92 178.5 175.1 175.6 
  EFP2 1.87 1.98 1.95 175.3 175.3 172.4 

mG…mC WC MP2 1.88 1.87 1.73 175.3 176.0 178.7 
  EFP2 1.83 1.97 1.95 176.0 175.3 171.6 

A…T WC MP2 1.93 1.82 2.83 173.6 179.1 132.7 
  EFP2 2.01 1.93 2.94 178.5 173.5 127.5 

mA…mT WC MP2 1.93 1.75 2.72 169.3 175.7 120.8 
  EFP2 2.23 1.78 2.39 166.2 159.9 119.1 

 

The EFP2 G…C WC hydrogen bond lengths differ from the RI-MP2/cc-pVTZ1 

lengths by 0.03 - 0.11 Å (Table 5.1). The EFP2 A…T WC hydrogen bond lengths are 0.08 - 

0.11 Å longer than those found with RI-MP21. The nonmethylated EFP2 structures depicted 

in Figs. 5.1B and 5.2B are very similar to the RI-MP21 structures of Figs. 5.1A and 5.2A, 

respectively. Structural differences are greater between the EFP2-optimized methylated WC 
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geometries compared to the corresponding RI-MP21 geometries. In EFP2-optimized 

mG…mC WC, the hydrogen bond R1 in Fig. 5.2 is 0.05 Å shorter than it is in RI-MP2 

optimized1 mG…mC WC, while R3 is 0.22 Å longer. In EFP2-optimized mA…mT WC, R3 

in Fig. 5.4 is 0.33 Å shorter than in RI-MP2 optimized1 mA…mT WC, while R1 is 0.30 Å 

longer. This indicates that the methylated nucleotide bases optimized with EFP2 are slightly 

tilted relative to their orientation in the RI-MP2 optimized1 configuration. 

 

Table 5.2.  Energies of hydrogen bonded complexes. EFP2 energy components (Coulomb, 
exchange-repulsion, polarization, dispersion) and total interaction energy for the hydrogen 
bonded nucleotide base complexes shown in Figs. 5.1 - 5.4. “Opt type” refers to the level of 
theory used for the geometry optimization, either RI-MP2 [ref. 1] or EFP2. EFP2 total 
energies are compared with the estimated CCSD(T)/CBS interaction energies1 shown for 
complexes with RI-MP2 optimized geometries taken from ref. 1. Energies in kcal/mol. 

 opt EFP2 EFP2 EFP2 EFP2 EFP2  
 type COULOMB EX-REP POL DISP TOTAL CCSD(T) 

G…C WC MP2 -41.4 36.4 -14.7 -10.7 -30.4 -32.1 
  EFP2 -37.6 28.1 -12.3 -9.4 -31.2   

mG…mC WC MP2 -44.4 41.4 -16.6 -11.7 -31.3 -31.6 
  EFP2 -39.4 30.6 -13.5 -10.0 -32.3   

A…T WC MP2 -25.3 26.7 -7.2 -8.2 -14.0 -16.9 
  EFP2 -22.0 19.0 -5.4 -7.0 -15.3   

mA…mT WC MP2 -28.8 29.8 -8.1 -9.1 -16.1 -18.2 
  EFP2 -27.5 26.3 -6.9 -9.2 -17.3   

 

The EFP2 total interaction energies (Table 5.2) of the hydrogen bonded nucleotide 

bases are generally in good agreement with the estimated CCSD(T) interaction energies1. 

EFP2 underbinds the G…C WC 1 complex by 1.7 kcal/mol (~5% of the total binding energy) 

compared to the estimated CCSD(T) value1. When allowed to relax to the slightly (0.03 - 

0.11 Å) more widely separated geometry found with an EFP2 optimization, the EFP2 G…C 

WC total interaction energy differs from the estimated CCSD(T) value1 by less than 1 

kcal/mol. The EFP2 interaction energy of the RI-MP2 optimized1 methylated guanine-

cytosine complex differs from the estimated CCSD(T) value1 by only 0.3 kcal/mol. The 

greatest discrepancy between the EFP2 and estimated CCSD(T)1 interaction energies is in the 

adenine-thymine complex. EFP2 under-binds the structure at both geometries examined, by 

2.9 kcal/mol when constrained to the RI-MP21 geometry and by 1.6 kcal/mol when an EFP2 

geometry optimization is used. EFP2 also under-binds the RI-MP2 optimized1 methylated 



www.manaraa.com

 101 

adenine-thymine structure compared to the estimated CCSD(T) value1, by 2.1 kcal/mol. 

Although this discrepancy decreases to less than 1 kcal/mol with the EFP2-optimized 

structure, the EFP2-optimized structure also differs the most from its corresponding RI-MP21 

geometry, as discussed above. 

The Coulomb interaction is the predominating attractive force in the hydrogen 

bonded complexes (Table 5.2), although, especially in the case of adenine-thymine and their 

methylated analogues, the exchange-repulsion is similar in size and opposite in sign. The 

EFP2 exchange-repulsion term exceeds the Coulomb attraction in the RI-MP21 geometries of 

A…T WC and mA…mT WC. At the EFP2-optimized geometries, the Coulomb magnitude 

exceeds the exchange-repulsion magnitude by only 3.0 kcal/mol in A…T WC and by 1.2 

kcal/mol in mA…mT WC. While the Coulomb term is ~5-10 kcal/mol larger than the 

exchange-repulsion in all G…C WC and mG…mC WC structures, the total EFP2 interaction 

energies are –30.4 kcal/mol (RI-MP2 optimized1 G…C WC) to -32.3 kcal/mol (EFP2-

optimized mG…mC WC). The Coulomb + exchange-repulsion accounts for only ~10% (RI-

MP2 optimized1 mG…mC WC) to 30% (EFP2-optimized G…C WC) of the total interaction 

energy. Thus, polarization and dispersion make significant contributions to the binding of 

hydrogen bonded nucleotide base pairs. 

Stacked structures.  EFP2 geometry optimizations produce stacked structures for 

guanine-cytosine (Fig. 5.5B), methylated guanine-cytosine (Fig. 5.6B), and adenine-thymine 

(Fig. 5.7B) that are similar to their RI-MP2 optimized1 counterparts (Figs. 5.5A - 5.7A). The 

EFP2-optimized structure for methylated adenine-thymine (Fig. 5.8B) is, however, 

significantly different from that obtained with RI-MP21 (Fig. 5.8A); between these two 

structures, the dihedral angle between nucleotide base ring planes changes by 65°. 

The EFP2-optimized stacked guanine-cytosine complex (G…C S) is similar to the 

RI-MP2 optimized1 G…C S. The nucleotide bases in EFP2-optimized G…C S are just 0.07 

Å more widely separated than in the RI-MP2 optimized1 G…C S structure (Table 5.3), and 

they are oriented only slightly differently, with the dihedral angle between the ring planes 

(Fig. 5.5A) differing by 6.3°. The greatest difference is their relative displacement, indicated 

by the angle α, which differs by ~10°. EFP2 interaction energies for RI-MP2 optimized1 

G…C S and EFP2-optimized G….C S differ by about 1 kcal/mol (Table 5.4). The EFP2  
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Fig. 5.5. Guanine-cytosine stacked complex. (A) depicts the RI-MP2/cc-pVTZ optimized 
geometry of ref. 1. (B) is the complex obtained by EFP2 optimization with the nucleobase 
geometries of ref. 1. Intermonomer distance R, angle α (chosen to demonstrate the relative 
displacement of the nucleotide bases with respect to one another), and the dihedral angle 
between the planes of the nucleotide bases (dashed red line) are given in Table 5.3 for each 
complex. 
 

 
Fig. 5.6. Methylated guanine-cytosine stacked complex. (A) depicts the RI-MP2/cc-pVTZ 
optimized geometry of ref. 1. (B) is the complex obtained by EFP2 optimization with the 
nucleotide base geometries of ref. 1. Intermonomer distance R, angle α (chosen to 
demonstrate the relative displacement of the nucleotide bases with respect to one another), 
and the dihedral angle between the planes of the nucleobases (dashed red line) are given in 
Table 5.3 for each complex. 
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Fig. 5.7. Adenine-thymine stacked complex. (A) depicts the RI-MP2/cc-pVTZ optimized 
geometry of ref. 1. (B) is the complex obtained by EFP2 optimization with the nucleotide 
base geometries of ref. 1. Intermonomer distance R, angle α (chosen to demonstrate the 
relative displacement of the nucleotide bases with respect to one another), and the dihedral 
angle between the planes of the nucleotide bases (dashed red line) are given in Table 5.3 for 
each complex. 
 

 
Fig. 5.8. Methylated adenine-thymine stacked complex. Two views are shown for both (A) 
and (B) to better illustrate the relative orientation of the nucleotide bases. (A) depicts the RI-
MP2/cc-pVTZ optimized geometry of ref. 1. (B) is the complex obtained by EFP2 
optimization with the nucleotide base geometries of ref. 1. Intermonomer distance R, angle α 
(chosen to demonstrate the relative displacement of the nucleotide bases with respect to one 
another), and the dihedral angle between the planes of the nucleotide bases (dashed red line) 
are given in Table 5.3 for each complex. 
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Table 5.3.  Geometries of stacked complexes. Lengths (in Å) and angles (in degrees) of the 
hydrogen bonds in the Watson-Crick (WC) complexes of Figs. 5.5 - 5.8. “Opt type” refers to 
the level of theory used for the geometry optimization, either RI-MP2 [ref. 1] or EFP2. Angle 
α (defined in Figs. 5.5A - 5.8A) indicates the relative displacement of the nucleotide bases. 
The dihedral angle (also defined in Figs. 5.5A - 5.8A) goes between ring planes of the 
nucleotide bases and indicates how parallel these ring planes are. 

 opt type R α dihedral 
G…C S MP2 3.47 85.5 10.3 

  EFP2 3.54 95.6 4.0 
mG…mC S MP2 3.21 91.6 -11.4 

  EFP2 3.47 78.1 -15.2 
A…T S MP2 3.18 87.6 29.8 

  EFP2 3.53 83.2 27.8 
mA…mT S MP2 3.14 100.6 -35.8 

  EFP2 3.32 91.1 30.7 
 

method overbinds the G…C S complexes more than any other stacked complex except 

EFP2-optimized mA…mT S. The EFP2 interaction energy of RI-MP2 optimized1 G…C S is 

1.6 kcal/mol more strongly bound than the estimated CCSD(T) energy1 (Table 5.4).  

In the EFP2-optimized methylated complex mG…mC S (Fig. 5.6B), the guanine 

nucleotide base is displaced over the cytosine relative to its orientation in RI-MP2 optimized1 

mG…mC S (Fig. 5.6A). The angle α, a measure of relative displacement of the nucleotide 

bases, is 91.6° in RI-MP2 optimized1 mG…mC S and 78.1° in EFP2-optimized mG…mC S 

(Table 5.3). However, the nucleotide base ring planes are similarly oriented in these two 

structures, with dihedral angles differing by less than 4° (Table 5.3). While the EFP2 

interaction energy of the RI-MP2 optimized1 mG…mC WC complex is 2.3 kcal/mol lower in 

magnitude than the estimated CCSD(T)1 energy, the EFP2 interaction energy of the EFP2-

optimized mG…mC WC complex is just 0.3 kcal/mol higher than the estimated CCSD(T)1 

energy (Table 5.4). 

The EFP2-optimized A…T S structure (Fig. 5.7B) is the most similar among the 

stacked complexes to its RI-MP21 optimized counterpart (Fig. 5.7A). The distance between 

nucleotide bases in EFP2-optimized A…T S is 0.35 Å greater than in RI-MP2 optimized1 

A…T S, though the relative displacement (given by α) and dihedral angle between 

nucleotide base planes differ by just 4.4° and 2° (Table 5.3). The EFP2 interaction energy of 

EFP2-optimized A…T S is only 0.3 kcal/mol larger in magnitude than the estimated  
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Table 5.4.  Energies of stacked complexes. EFP2 energy components (Coulomb, exchange-
repulsion, polarization, dispersion) and total interaction energy for the stacked nucleotide 
base complexes shown in Figs. 5.5 - 5.8. “Opt type” refers to the level of theory used for the 
geometry optimization, either RI-MP2 [ref. 1] or EFP2. The estimated CCSD(T)/CBS 
interaction energies1 are shown for complexes with geometries taken from ref. 1. Energies in 
kcal/mol. 

 opt EFP2 EFP2 EFP2 EFP2 EFP2  
 type COULOMB EX-REP POL DISP TOTAL CCSD(T) 

G…C S MP2 -20.6 20.6 -3.1 -17.5 -20.6 -19.0 
  EFP2 -22.1 22.2 -3.7 -18.1 -21.7   

mG…mC S MP2 -21.9 30.3 -3.1 -23.4 -18.1 -20.4 
  EFP2 -19.7 22.3 -3.4 -20.0 -20.7   

A…T S MP2 -8.6 16.1 -0.7 -17.6 -10.7 -12.3 
  EFP2 -10.9 13.9 -0.6 -14.9 -12.6   

mA…mT S MP2 -11.3 26.3 -1.3 -25.1 -11.4 -14.6 
  EFP2 -15.9 18.3 -1.1 -18.2 -16.8   

 

CCSD(T)1 interaction energy, while for A…T S optimized with RI-MP21, it is 1.6 kcal/mol 

lower. 

Among the stacked structures, as with the hydrogen bonded structures, the greatest 

discrepancy between RI-MP21 and EFP2-optimized geometries occurs for the methylated 

adenine-thymine complex. Also as in the case of mA…mT WC compared to other hydrogen 

bonded structures, the difference between the estimated CCSD(T)1 and EFP2 interaction 

energies of RI-MP2 optimized1 mA…mT S is the greatest of all of the stacked structures. 

Two views of mA…mT S are shown in Fig. 5.8, where it is evident that the nucleotide bases 

in mA…mT S optimized with EFP2 (Fig. 5.8B) are rotated relative to their orientation in 

mA…mT S optimized with RI-MP21 (Fig. 5.8A). The dihedral angle between the nucleotide 

base planes differs greatly between the two structures; this angle is -35.8° in RI-MP21 

optimized mA…mT S and is +30.7° in EFP2-optimized mA…mT S (Table 5.3). Compared 

to the estimated CCSD(T) interaction energies1, EFP2 under-binds the RI-MP2 optimized1 

mA…mT S complex by 3.2 kcal/mol. The EFP2-optimized mA…mT S structure is 2.2 

kcal/mol more strongly bound compared to the estimated CCSD(T)1 value. 

While the hydrogen bonded structures are more strongly bound than their respective 

stacked counterparts, the stacked guanine-cytosine complexes have a greater interaction 

energy than the hydrogen bonded adenine-thymine complexes. The EFP2 interaction energy 

for the RI-MP2 optimized1 G…C S structure is 6.6 kcal/mol more strongly bound than that of 



www.manaraa.com

 106 

the RI-MP2 optimized1 A…T WC structure (2.1 kcal/mol more strongly bound with 

estimated CCSD(T)1)  and 4.5 kcal/mol more strongly bound than that of RI-MP2 optimized1 

mA…mT WC (0.8 kcal/mol with estimated CCSD(T)1) (Tables 5.2 and 5.4). The RI-MP2 

optimized1 stacked methylated structure mG…mC S has an EFP2 interaction energy 4.1 

kcal/mol greater (in magnitude) than RI-MP2 optimized1 A…T WC (3.5 kcal/mol with 

estimated CCSD(T)1) and 2.0 kcal/mol greater than RI-MP2 optimized1 mA…mT WC (2.2 

kcal/mol with estimated CCSD(T)1) (Tables 5.2 and 5.4). 

Dispersion is the single greatest attractive contribution to the EFP2 total interaction 

energy for the stacked adenine-thymine pairs, but not for guanine-cytosine (Table 5.4). In 

mA…mT S optimized with RI-MP21, the dispersion energy is -25.1 kcal/mol, the highest for 

any structure examined. This is more than twice the binding contribution of the Coulomb 

term (-11.3 kcal/mol). The magnitude of the EFP2 dispersion energy for RI-MP2 optimized1 

A…T S exceeds the magnitude of the EFP2 exchange-repulsion by 1.5 kcal/mol (Table 5.4). 

In the guanine-cytosine pairs, the Coulomb term predominates, although the dispersion term 

is also large (within 4 kcal/mol of the Coulomb contribution for both EFP2-optimized and 

RI-MP2 optimized1 G…C S structures). The exchange-repulsion term equals or 

approximately equals the magnitude of the Coulomb attraction in both G…C S structures, so 

dispersion remains extremely important for binding in stacked guanine-cytosine pairs. 

Among the methylated stacked pairs, the magnitude of the dispersion term is greater than the 

magnitude of the Coulomb term in all four structures examined. The exchange-repulsion 

term in all four methylated stacked pairs is greater in magnitude than either the Coulomb or 

dispersion terms. So, in fact, all of the interaction types make significant contributions to the 

binding of the stacked pairs, except for the polarization, which remains small in all species. 

 

Conclusions 

 

The EFP2 method predicts the structures of the hydrogen bonded and stacked 

guanine-cytosine, methylated guanine-cytosine, and adenine-thymine pairs in good 

agreement with RI-MP21. Greater discrepancy is found between EFP2 and RI-MP2 

optimized geometries of methylated adenine-thymine complexes.  
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The EFP2 total interaction energies are in fair to excellent agreement with the 

corresponding estimated CCSD(T)1 results. For the RI-MP2 optimized1 hydrogen bonded 

(Watson-Crick, or WC) structures, the root mean square deviation (RMSD) between the 

EFP2 and est. CCSD(T)1 total interaction energies is 2.0 kcal/mol, with a maximum unsigned 

difference of 2.9 kcal/mol (corresponding to A…T WC). The RMSD between the EFP2 and 

est. CCSD(T)1 total interaction energies when the hydrogen bonded structures are optimized 

with EFP2 (whereas the est. CCSD(T)1 values correspond to the RI-MP2 optimized1 

structures) is 1.1 kcal/mol. The maximum unsigned difference, still corresponding to the 

A…T WC structure, is 1.6 kcal/mol. Among the stacked structures, the RMSD between 

EFP2 and est. CCSD(T)1 energies for structures optimized with RI-MP21 is 2.3 kcal/mol. The 

maximum unsigned difference, corresponding to mA…mT S, is 3.2 kcal/mol. Comparing 

EFP2 interaction energies for the EFP2-optimized stacked structures with est. CCSD(T)1 

interaction energies for the RI-MP2 optimized1 structures gives an RMSD of 1.8 kcal/mol 

and a maximum unsigned difference of 2.7 kcal/mol (for G…C S). 

An accurate description of the dispersion energy is essential to determine the binding 

energies of the nucleotide base pairs, even for the hydrogen bonded structures. While the 

Coulomb interaction is the predominant attractive energy term for hydrogen bonded 

structures, its magnitude is only ~1-3 kcal/mol larger than the exchange-repulsion for EFP2-

optimized A…T WC and EFP2-optimized mA…mT WC. The EFP2 exchange-repulsion 

term slightly (~1 kcal/mol) exceeds the magnitude of the EFP2 Coulomb term in the RI-MP2 

optimized1 A…T WC and mA…mT WC structures. In the guanine-cytosine and methylated 

guanine-cytosine hydrogen bonded structures, the magnitude of the Coulomb term is ~9 

kcal/mol larger than the exchange-repulsion term among the EFP2-optimized structures; 

however, this accounts for only ~30% of the total interaction energy, the remainder being 

comprised of the dispersion and polarization energies. 
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CHAPTER 6: THE DISPERSION INTERACTION IN COMBINED 

AB INITIO-EFFECTIVE FRAGMENT POTENTIAL SYSTEMS 

 

Introduction 

 

The dispersion interaction is an attractive force between atoms and molecules that is 

caused by the interactions of induced multipoles. Dispersion arises from the correlated 

movement of electrons; an instantaneous multipole on one molecule may induce a multipole 

on another molecule. While dispersion is generally a weak intermolecular force, it is the sole 

attractive force between neutral atoms and molecules that lack permanent multipole 

moments. For example, dispersion is singularly responsible for the attraction between atoms 

of the noble gases, allowing for their condensation at low temperatures. Because dispersion 

depends on atomic or molecular polarizability, the dispersion energy is significant between 

atoms or molecules with large, diffuse electron clouds, such as π clouds. 

The general formula for the dispersion interaction between two (quantum mechanical, 

QM) molecules comes from the second-order term in intermolecular perturbation theory. 

Based on this functional form, a formula for the dispersion interaction between two 

molecules modeled with the effective fragment potential method (EFP) was previously1 

derived and implemented in the General Atomic and Molecular Electronic Structure System 

(GAMESS)2. However, a formula for the dispersion energy in mixed systems – those in 

which one molecule is modeled with EFP and another with a full ab initio (AI) QM method 

(e.g. Hartree-Fock, MP2) – does not yet exist. This chapter presents efforts toward deriving 

and coding a formula for the EFP-AI dispersion interaction. 

The first section shows the derivation of the dispersion energy in its most general 

form, from intermolecular perturbation theory. The next section presents a derivation of the 

EFP-EFP dispersion term and gives an overview of its implementation in GAMESS. The 

final section details progress toward an EFP-AI dispersion energy derivation and discusses 

results from the code that has been completed thus far. 
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Dispersion interaction from perturbation theory 

 

The general formula for the dispersion interaction between two closed-shell 

nondegenerate ground state molecules can be derived with Rayleigh-Schrödinger 

perturbation theory, following the method of Stone3. The unperturbed Hamiltonian is given 

by the sum of the Hamiltonians for the individual molecules, A and B:  

  

! 

) 
H 0 =

) 
H A +

) 
H B                       (1) 

The perturbation operator embodies all electrostatic interactions between the molecules. It 

can be represented in numerous ways, the simplest of which is 

 
  

! 

) 
V =

qiq j

Rijj"B
#

i"A
#                                 (2) 

where qi is the charge on particle i (electron or nucleus) on molecule A and Rij is the distance 

between i and j. A more convenient representation is the multipolar expansion: 

 
  

! 

) 
V = T ABqAqB + Ta

AB qAµa
B "µa

AqB( )
a

x,y,z

# " Tab
ABµa

Aµb
B

a,b

x,y,z

# + ...                             (3) 

where qA is the net charge on molecule A, 

! 

µa
B  is the ath directional (x, y, z) component of the 

dipole moment on B, etc. The quantities T, Ta, Tab, etc. are the field, field gradient, field 

second derivative, etc.; they are electrostatic tensors of rank indicated by the number of 

subscripts. T corresponds to charge-charge interactions, Ta to charge-dipole interactions, Tab 

to dipole-dipole, Tabc to dipole-quadrupole, and so on. The formulae of the first three tensors 

appear below, where 

! 

Rij
a  denotes the ath directional component of the distance between i and 

j. 

 

! 

T ij =
1
Rij

                                 (5) 

 
  

! 

Ta
ij ="a

1
R

= #

r 
R ij

a

Rij
3                                 (6) 

 
  

! 

Tab
ij ="a"b

1
R

=
3

r 
R ij

a
r 
R ij

b # Rij
2$ab

Rij
5                                          (7) 

When the perturbation expansion is carried out, the zeroth-order term gives the sum 

of the ground state energies of A and B, and the first-order term gives the Coulomb 
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(electrostatic) interaction energy. The second-order energy term in the perturbation 

expansion is given by 

 
  

! 

" " W 0 = #
0A0B

) 
V mn mn

) 
V 0A0B

Wmn #W0A0Bm,n
$                                          (8) 

where m and n are states of molecules A and B, respectively, 0A represents the ground state of 

molecule A, and Wmn = Em + En is the energy of the system in state 

! 

mn . In Eq. (8), either m 

or n may be zero, but not both. This second-order perturbative term encompasses both the 

induction (polarization) and dispersion energies. Induction arises from the interactions 

between permanent multipoles on one molecule and induced multipoles on the other. As 

such, its representation in Eq. (8) occurs in those terms in the summation in which either m or 

n is equal to 0, i.e., one of the interacting molecules is in its ground state, while the other is in 

an (induced) excited state. The remainder of the terms in the summation, those in which both 

m and n refer to excited states, correspond to the dispersion energy: 

 

  

! 

E disp = "
0A0B

) 
V mn mn

) 
V 0A0B

Em
A + En

B " E0
A " E0

B
m#0
n#0

$                   (9) 

 The multipolar expansion of Eq. (3) may then be substituted for the perturbation 

operator in Eq. (9). For simplicity, only the dipole-dipole term of the expansion is shown 

here. Since the charges q in Eq. (3) are scalar values, integrals involving q will be of the 

form, for example, 

! 

0A q
A m = qA 0A m ; these integrals are zero because the ground and 

excited states are orthogonal to each other. Therefore, the multipole expansion, when used in 

this context, properly begins with the dipole-dipole term. The dispersion energy 

corresponding to the dipole-dipole interaction only is labeled 

! 

E6
disp  for reasons that will be 

shown at the end of the derivation. 

 

  

! 

E6
disp = "

0A0B Tab
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µ a
A ) 
µ b
B
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x,y,z

# mn mn Tcd
AB ) 

µ c
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µ d
B
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x,y,z

# 0A0B
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B " E0
A " E0

B
m$0
n$0

#               (10) 

The dipole operators apply only to the states of their respective molecules (m on A or n on B), 

and the quadrupole tensors do not depend on the states. Eq. (10) may then be simplified to  
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! 

E6
disp = " Tab
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AB 1
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$
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$ 0A
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µ a
A m m ) 
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µ b
B n n ) 

µ d
B 0B                (11) 

where 

! 

Em0 = Em " E0 . These factors do not permit the easy separation of Eq. (11) into 

portions relating to molecule A and portions relating to molecule B. The identity3 

 

! 

1
A + B

=
2
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% d#                  (12) 

may be applied to the denominator of Eq. (11) to obtain 
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after the energies in Eq. (11) are expressed in terms of frequencies, e.g.   

! 

Em0
A = h"m

A . From 

time-dependent perturbation theory, it can be shown that the response of a molecule to an 

oscillating electric field is an oscillating dipole moment. If a field Fb with frequency ω is 

given by 

! 

Fbe
"i#t , then the dipole moment is 

! 

µa ="ab #( )Fbe$i#t . The components of the 

frequency-dependent dynamic polarizability tensor, α, are given by3 

     
  

! 

"ab #( ) =
#m 0 ) 

µ a m m ) 
µ b 0 + 0 ) 

µ b m m ) 
µ a 0{ }

h #m
2 $# 2( )m

% = 2
#m 0

) 
µ a m m ) 

µ b 0
h #m

2 $# 2( )m
%          (14) 

α describes the propagation of a density fluctuation within a molecule.4 Expressing the factor 

ω2 as 

! 

" 2 = # #" 2( ) = # i"( )2 , Eq. (13) can be recast in terms of the dynamic polarizability 

tensor at an imaginary frequency: 

 
  

! 

E6
disp = "

h
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Tab
ABTcd

AB $ac
A i%( )$bd

B i%( )d%
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&

'
abcd
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(                 (15) 

 The concept of imaginary frequencies is purely a mathematical construct, with no real 

physical meaning. Regardless, the integral in Eq. (15) is well-behaved and decreases 

monotonically to 0 as 

! 

" #$ . 

 The dynamic polarizability tensors in Eq. (15) are implicitly calculated at a single 

point on each molecule. However, there are known issues with convergence when using this 

approach; to be effective, it may require higher terms in the multipolar expansion5 (i.e. 

quadrupole polarizabilities might need to be considered). A distributed polarizability model, 
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in which polarizability tensors are calculated at multiple expansion points, has the advantage 

of more successful convergence and possibly giving a more realistic portrayal of the response 

of a molecule to the nonuniform fields arising from the interacting molecules5. Converting 

Eq. (15) to the distributed polarizability model gives 

 
  

! 

E6
disp = "

h

2#
Tab
ijTcd

ij $ac
i i%( )$bd

j i%( )d%
0

&

'
abcd

x,y,z
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j)B
(

i)A
(                (16) 

Eq. (16) is the final expression for the dipole-dipole term of the dispersion interaction energy, 

where i and j are expansion points for distributed polarizabilities on molecules A and B.  

 The preceding derivation relied only on the dipole-dipole term in the multipolar 

expansion of the interaction operator; the higher-order terms may be derived similarly. The 

dipole-dipole interaction tensors Tab in Eq. (16) each scale as R-3, so the distance dependence 

of 

! 

E6
disp  scales as R-6. The next term in the dispersion energy expansion arises from dipole-

dipole interactions Tab  on one molecule and dipole-quadrupole interactions Tcde on the other. 

The latter tensor scales as R-4. This implies that the distance dependence of the corresponding 

dispersion energy term scales as R-7. The scaling associated with dipole-quadrupole 

interactions on both molecules is then R-8, and so on. Thus, the total dispersion energy can be 

expressed in the form 

 

! 

E disp =
Cn

Rn
n"6
#                                           (17) 

However, the odd terms are almost always ignored. For atoms and for molecules with an 

inversion center, the dipole-quadrupole electrostatic tensor components are zero, as are the 

components of all higher-order tensors of paired “unlike” multipoles. While, in actuality, the 

odd terms in Eq. (17) do contribute to the total dispersion energy of interacting 

nonsymmetric molecules, the contribution is assumed to be insignificant. Therefore, the usual 

form of the dispersion expansion is 

 

! 

E disp =
C6

R6
+
C8

R8
+
C10
R10

+ ...                             (18) 

 

 

 



www.manaraa.com

 114 

Dispersion interaction between effective fragment potentials 

 

 The equation for the dispersion interaction between two molecules modeled with the 

effective fragment potential method begins with Eq. (18). The dispersion energy expression 

is truncated after the first (dipole-dipole) term; the remainder of the series has been shown1 to 

be well approximated as 1/3 of the value of the first term. The distributed polarizability 

expression of Eq. (16) is the foundation for calculating the dipole-dipole term. EFP 

expansion points for the dispersion energy are taken to be the localized molecular orbital 

(LMO) centroids, i.e. the centers of charge, for bonds and lone pairs. LMO centroids are a 

physically meaningful choice for distributed polarizability points because the induced dipole 

moment is related to a shift in the position of the centroids. The distance factor R-6 is 

calculated between these LMO centroids, leaving the C6 coefficient (the remaining portion of 

Eq. (16)) to be determined: 

 

! 

C6 = "ac
i i#( )"bd

j i#( )
0

$

%
abcd

x,y,z

&
j'B
&

i'A
& d#                             (19) 

The superscripts i and j refer to LMOs on fragments A and B, respectively.  

Following the approach of Amos6,7, the dynamic polarizability tensors α associated 

with each polarizable point are computed via the time-dependent analog of the coupled 

perturbed Hartree-Fock (CPHF)8 equations. Details may be found in refs. 1 and 6 - 8. 

Specifically, each α tensor is computed at 12 distinct imaginary frequency values for later 

use with integration using numerical quadrature. 

 The C6 coefficient given in Eq. (19) is anisotropic, as the summation is over all 

possible x, y, z pairs. In most computational methods, an isotropic C6 – one which does not 

include xy, xz, and other off-diagonal terms – is preferred. This is because only the trace of 

the polarizability tensor is distance-independent, so it remains unchanged during geometry 

optimizations; otherwise, the calculation of the tensors would have to be repeated at each 

optimization step, a process that is too time-consuming. Therefore, an isotropic 

approximation is employed, in which the summation over distance components is eliminated 

by expressing α for each LMO as 1/3 of the trace of the polarizability tensor at a given 
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imaginary frequency. This value is represented by 

! 

" j i#( )  for LMO j and frequency ω. The 

isotropic C6 becomes 

 

! 

C6 = " i i#( )" j i#( )
0

$

%
j&B
'

i&A
' d#                             (20) 

 To convert the integral to a range conducive with the use of Gauss-Legendre 

numerical quadrature, a substitution of variables is made: 

 

! 

" = # 0
(1$ t)
(1+ t)

   

! 

d" =
2# 0dt
(1+ t)2

                (21) 

This converts the range of integration to be from -1 to +1. By using Gauss-Legendre 

abscissas for t, it also determines the values of the (imaginary) frequencies at which the 

polarizability tensors must be calculated. This substitution, including the optimal value of ν0 

(0.3), was determined in ref. 9. 

 The numerical quadrature scheme for the C6 coefficient between LMOs i and j is 

given by 
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C6
ij = wk

2" 0
1# tk( )2

$ i i%k( )$ j i%k( )
k=1

12

&                             (22) 

where tk and wk are Gauss-Legendre abscissas and weights and 

! 

" j i#k( ) is 1/3 of the trace of 

the polarizability tensor for LMO j at frequency ωk (given by Eq. (21) for each tk). 

 Once the coefficients have been determined, the dispersion energy has the form 

 

! 

EEFP"EFP
disp = "

4
3

C6
ij

Rij
6

j#B
$

i#A
$                                         (23) 

where the factor of 4/3 comes from the approximation of the higher-order dispersion terms as 
1/3 the value of the dipole-dipole term9. 

 In the implementation of EFP-EFP dispersion coded in GAMESS, the dispersion 

energy is multiplied by a distance-dependent damping function in order to account for charge 

penetration effects that occur at short inter-fragment separations. Two damping functions are 

available in the GAMESS EFP code. The original implementation of the EFP-EFP dispersion 

interaction utilized a Tang-Toennies10 damping function 

 

! 

f6(R) =1" e"#R
#R( )k

k!k= 0

6

$                                         (24) 
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where β is a parameter assigned the value of 1.5 [ref. 9]. A newer damping function11, free of 

parameters and depending explicitly on the overlap matrix S between fragment charge 

clouds, is given by 

 

! 

C6
ij " 1# Sij

2
1# 2ln Sij + 2ln2 Sij( )( )C6

ij                                       (25) 

 

Dispersion interaction between an effective fragment potential and an ab initio molecule 

 

 In constructing an expression for the EFP-AI dispersion interaction, it would be 

appealing to obtain an equation analogous with Eq. (16), 
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E6
disp = "
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as was done with the EFP-EFP dispersion derivation. In the case of EFP-EFP, the Tab and Tcd 

tensors become a straightforward R-6 calculation between fragment LMO centroids and the 

remainder of the expression (the integral over the imaginary frequencies) becomes a 

! 

C6
ij  

value calculated between each LMO pair. The calculation of the dynamic polarizability 

tensors α at the necessary (pre-determined) frequencies is part of the MAKEFP procedure, 

which generates the fragment potential parameters before the calculation of interaction 

energy components begins. However, this procedure is too time-consuming to be appropriate 

for the AI molecule, since constructing the α tensors would necessarily occur during the 

calculation of the EFP-AI interaction. For example, if a Hartree-Fock calculation on phenol 

with the 6-311++G(3df,2p) basis set (equivalent to 375 basis functions) takes approximately 

six minutes on a given computer, a CPHF calculation on the same chemical system requires 

10 minutes, and a time-dependent Hartree-Fock (TDHF) calculation requires 12 minutes. To 

obtain the polarizability tensors on the AI molecule, both CPHF and TDHF calculations 

would need to be performed, thus increasing the run time significantly. Therefore, the EFP-

AI dispersion derivation must diverge from the perturbation theory derivation before both of 

the α tensors are constructed. 
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 Let A refer to the AI molecule and B to the EFP fragment. The derivation of the EFP-

AI dispersion interaction begins with Eq. (13) in the perturbation theory derivation of the 

dispersion energy: 
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As before, m and n are excited states of molecules A and B, Tab is the electrostatic tensor 

given by Eq. (7),   

! 

) 
µ a
A  is the dipole operator pertaining to molecule A, and frequency 

! 

"m
A  for 

molecule A is given by the relation   

! 

Em0A
A = h"m

A  where 

! 

Em0A
A  is the difference in energy 

between the ground state 0A and the excited state m. Since values of the dynamic 

polarizability tensors are calculated for EFP fragments as part of the MAKEFP process, the 

EFP fragment B may be treated in much the same way as it is in modeling the EFP-EFP 

dispersion interaction. Therefore, using the definition of the α tensor given in Eq. (14), the 

frequencies and dipole integrals pertaining to EFP fragment B are expressed as a 

polarizability tensor:  
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Three considerations must be taken into account in order to convert Eq. (26) into a 

computationally useful form. First, the equation must be re-cast in terms of orbitals rather 

than the sum-over-states form. Second, distributed polarizabilities must be used with the EFP 

fragment, B. Finally, the isotropic approximation must be employed. 

To convert from a sum-over-states approach to an orbital-based approach, let i 

correspond to occupied molecular orbitals (MOs) and k to virtual MOs on the AI molecule. 

Also let 

! 

"ki ="k #" i . This changes the dipole integral and the integral over imaginary 

frequencies in Eq. (26) to: 
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The use of distributed polarizabilities is desired on the EFP part, with expansion points at 

LMO centroids j on molecule B. This entails the conversion  

! 

"bd
B i#( )$ "bd

j i#( )
j%B
&                   (29) 

Changing from sum-over-states to the orbital approximation and changing to distributed 

multipoles on fragment B, Eq. (26) becomes 
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The isotropic approximation is then employed to eliminate off-diagonal terms in the 

tensors: 
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where 

! 

" j i#( )  is 1/3 of the trace of the polarizability tensor for LMO j and frequency ω. Now, 

! 

Taa
ijTaa
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6 , where 

! 

Rij  is the distance between centroids of LMOs i and j, 

and the remainder of the terms inside the summations in Eq. (31) corresponds to the 

distributed C6 coefficient: 
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Implementation 

 

Eq. (31) is a MO-based expression for the EFP-AI dispersion interaction; however, it 

would be advantageous to express the dipole integral in terms of atomic orbitals (AOs). The 

dipole integrals in the AO basis are readily available (calculated upon Hartree-Fock 

convergence). Therefore, the dipole integrals are computed in terms of AOs and converted to 

the MO basis for use with the remainder of the calculation. Only the occupied × virtual block 
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of the matrix of dipole integrals is required, so the basis conversion takes the form of the 

transformation 

! 

µa
A ,occ"vir =OCCT #µa

A #VIR                   (33) 

where 

! 

µa
A  is the complete matrix of dipole integrals with elements   

! 

a ) 
µ a
A b  over all AOs a 

and b, OCC consists of the first NA ( = number of occupied orbitals) columns of the MO 

coefficient matrix, and VIR consists of the remaining Ntotal - NA columns. This produces a 

matrix 

! 

µa
A ,occ"vir  with dimensions NA × (Ntotal - NA) corresponding to the dipole integrals 

between occupied × virtual canonical MOs. Rather than using all of the occupied MOs in the 

calculation of the distributed C6 values, only the valence LMOs are used. 

 Code for the integral over imaginary frequencies was obtained through 

straightforward modification of the EFP-EFP C6 code, used to calculate Eq. (20). The same 

transformation of variables (Eq. (21)) was used with Gauss-Legendre numerical integration, 

resulting in a formula similar to Eq. (22). Unlike Eq. (22), the α polarizability tensor on 

molecule A is replaced with an expression dependent on MO energy differences. (Since the 

MO energies and the factors ωki in Eq. (31) differ by   

! 

h , which is 1 in atomic units, the 

energy difference between virtual MO k and occupied MO i is used for ωki.) The EFP-AI 

expression for the imaginary frequency integral is 
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As shown in Eq. (32), the expression in Eq. (34) must be multiplied by 

  

! 

i ) 
µ a k k ) 

µ a i  to produce the distributed C6 coefficients. First, for each i and k, Ij of Eq. (34) 

is multiplied by   

! 

i ) 
µ a k  (terms in the occupied × virtual canonical MO-basis dipole integral 

matrix). The resulting quantity is multiplied by the transpose of the occupied × virtual MO-

basis dipole integral matrix, using matrix multiplication (dot product). Element 
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Since the   

! 

i ) 
µ a k  elements obtained thus far are integrals between canonical MOs, a 

transformation must be applied to 

! 

Va
j , in the form of multiplication by a localization matrix, 
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to give distributed C6 coefficients corresponding to LMOs. Finally, these C6 coefficients can 

be multiplied by R-6 calculated between the centroids of LMO i on A and LMO j on B. 

 

Results and Discussion 

 

The neon dimer provides a concrete example of the process for determining C6 

coefficients in EFP-AI systems. Having four valence orbitals (lone pairs), a neon atom is 

modeled with EFP as four α polarizability tensors on the orbital centroids. The EFP-EFP 

treatment of dispersion entails integrals between each α on one fragment with every α on the 

other fragment, giving 16 C6 integrals. The EFP-AI approach outlined above produces four 

matrices (one for each αj on the EFP part) of dimension 4 × 4 (valence orbitals). The 

diagonal elements of these four matrices give the effective C6 values between the two 

valence orbitals on the AI molecule and the EFP expansion point. For comparison, the 

distributed EFP-EFP C6 coefficients for the neon dimer, calculated with basis set 6-

311+G(2p), are all approximately 0.01931, differing from one another after the 8th decimal 

place. The effective EFP-AI coefficients, with both the AI and the EFP part calculated in the 

6-311+G(2p) basis set, are all approximately 0.01586, differing from each other after the 6th 

decimal place. 

 Upon transformation to the LMO basis, the diagonal elements of the localized 

matrices correspond to isotropic EFP-EFP 

! 

C6
ij  values for various dimer systems (Table 6.1).  

 

Table 6.1. Comparison of EFP-EFP and EFP-AI distributed C6 dispersion coefficients.  
Dimer type EFP-EFP C6 EFP-AI C6 

Ne   
6-311+G(2p) 0.01931 0.01586 

Ar   
6-31+G(2d,2p) 2.477 2.114 

6-311+G(3d,3p) 3.762 3.141 

CH4   
STO-3G 1.36 1.26 
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 While the calculation of R-6 between LMOs has not yet been implemented, the 

similarity between the EFP-EFP C6 and the distributed C6 values of EFP-AI suggests that the 

method presented here is correct.  

 

Conclusions 

 

EFP-AI distributed 

! 

C6
ij coefficients can be obtained by transforming AI dipole 

integrals from the atomic orbital basis to the localized molecular orbital (LMO) basis, then 

multiplying by an integral between the EFP dynamic polarizability tensor and a function of 

AI orbital energies. This gives a C6 value for each pair of LMOs i and j, on the ab initio 

molecule and the EFP fragment, respectively. For all systems examined, this method 

produces values similar to the distributed C6 coefficients in the EFP-EFP dispersion 

interaction. Total EFP-AI dispersion interaction energies can be obtained by calculating 

values of R-6 where R is the distance between LMOs i and j. 
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CHAPTER 7: CONCLUSIONS 

 

 The geometries of small aluminum clusters 

! 

Al13  and 

! 

Al13
"  were examined in Chapter 2 

with both ab initio and density functional (DFT) methods and with various basis sets. 

! 

Al13
"  is 

a closed-shell species, while 

! 

Al13  is a doublet radical. Second-order perturbation theory 

(MP2) with the largest basis set used, 6-311+G(2d), finds a distorted icosahedral ground state 

structure for 

! 

Al13  and a perfect icosahedral structure for the anion. CCSD(T) energies were 

computed for the neutral and anionic clusters at their respective MP2 optimized geometries. 

The difference in the energies gives the adiabatic electron affinity of 

! 

Al13 . Using the 

CCSD(T) energies, this value was determined to be 3.57 eV, which compares favorably with 

the experimentally determined value of 3.62 ± 0.06 eV. The close agreement implies that the 

MP2 geometries are correct. The MP2 geometries were compared with geometries obtained 

from DFT calculations. Different combinations of functionals and basis sets were found to 

produce different results with DFT. While the BPW91 functional predicts ground state 

icosahedral structures, like those found with MP2, the B3LYP functional finds icosahedral 

and decahedral structures that are nearly isoenergetic. When using the LANL2DZ functional 

with a small basis set, decahedral structures are favored. An MP2 Hessian (second derivative 

of the potential energy with respect to the coordinates) calculation demonstrated that the 

decahedral structure is a transition state. 

The general effective fragment potential method (EFP2) was used to model 

substituted benzene dimers in Chapter 3 and pyridine and benzene-pyridine dimers in 

Chapter 4. In both studies, EFP2 was first used to model a series of constrained (non-

equilibrium) structures that were specifically chosen to examine π-π interactions. These 

structures included T-shaped, sandwich, and parallel displaced geometries. Because the 

structures had previously been examined with MP2, SCS-MP2, CCSD(T), and/or SAPT, 

high-level ab initio data was available for comparison. EFP2 energies for the constrained 

structures compare very well with the ab initio energies, frequently differing by less than a 

few tenths of a kcal/mol. Compared to SAPT, EFP2 consistently – but slightly – 

overestimates the magnitude of the dispersion energy term. For the majority of structures, 

EFP2 favors a slightly larger intermonomer separation than MP2 or CCSD(T) does; the EFP2 
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underestimation of dimer binding energy increases in degree as intermonomer separation 

grows smaller. Overall, EFP2 was shown to be in excellent agreement with high-level ab 

initio methods for modeling these dispersion-dominated systems. The agreement is especially 

impressive when taking into account the miniscule run-time of an EFP2 calculation (less than 

one second, once the fragment parameters have been generated beforehand). 

In addition to comparing EFP2 results with high-level ab initio data, Chapters 3 and 4 

also showcase the utility of EFP2, in combination with Monte Carlo/simulated annealing 

(MC/SA), for exploring the potential energy surfaces of the dimers. Three major structural 

motifs were found in common with all of the substituted benzene and pyridine dimers: offset 

T-shaped, parallel displaced, and edge-on. The offset T-shaped configuration involves a “π-

hydrogen” interaction between a hydrogen on one monomer and the ring center (π cloud) of 

the other. The parallel displaced configuration is generally similar to the constrained parallel 

displaced structure examined in the first part of each study, but the monomers are not usually 

perfectly parallel. Additionally, in the case of the substituted benzene dimers, the substituent 

lies across the ring of the benzene monomer; this type of configuration was not among those 

examined in the first part of the study. The relative energies of these structural motifs vary. 

For benzene-pyridine and pyridine dimers, the edge-on motif describes the global minimum. 

For benzene-benzonitrile and benzene-fluorobenzene, the global minimum is parallel 

displaced. For benzene-phenol and the unsubstituted benzene dimer, the T-shaped structure is 

the most energetically preferred. The edge-on configuration usually involves a larger 

attractive Coulomb (electrostatic) term than occurs in the other configurations, indicating an 

interaction between the partially negative substituent or heteroatom and the partially positive 

hydrogens of the second monomer. Although the Coulomb term is usually the largest 

attractive component of the interaction energy for the edge-on structures, the dispersion term 

is significant as well. In the unsubstituted benzene dimer, this structure is stabilized primarily 

by dispersion energy.  

 For both hydrogen bonded and stacked motifs of guanine-cytosine, methylated 

guanine-cytosine, and adenine-thymine nucleotide base pairs, EFP2 predicts structures very 

similar to those found with MP2 optimizations. A greater difference between EFP2 and MP2 

optimized structures occurs with methylated adenine-thymine pairs. EFP2 total interaction 
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energies for these structures are in good agreement with estimated CCSD(T) interaction 

energies. The root mean square deviation (RMSD) between EFP2 and est. CCSD(T) single 

point energies for hydrogen bonded structures held at their MP2 optimized geometries is 2.0 

kcal/mol; for stacked structures, it is 2.3 kcal/mol. The EFP2 energy components show that 

dispersion is a significant attractive force between nucleotide bases – even among the 

hydrogen bonded structures, in which the Coulomb energy is the single largest attractive 

energy term. For hydrogen bonded adenine-thymine and its methylated analog, the 

magnitude of the Coulomb term exceeds that of the exchange repulsion by only 1 to 3 

kcal/mol. While the magnitude of the Coulomb term is about 9 kcal/mol higher than the 

exchange-repulsion term for the guanine-cytosine hydrogen bonded structure, this accounts 

for only about 30% of the total interaction energy, the rest being comprised of the dispersion 

and polarization terms. The stacked guanine-cytosine structure has a larger total interaction 

energy than the hydrogen bonded adenine-thymine structure. 

 An equation for the dispersion energy arising from the interaction between a molecule 

modeled with EFP and one modeled with a fully quantum mechanical (ab initio, AI) method 

was derived. The dynamic polarizability approach used for calculating the dispersion energy 

between two molecules modeled with EFP is too time-consuming to be used in the EFP-AI 

case. Effective distributed 

! 

C6
ij  coefficients, between localized molecular orbitals i on the ab 

initio molecule and j on the EFP fragment, can be produced; these coefficients agree well 

with EFP-EFP distributed C6 values. A total dispersion energy could be calculated by 

multiplying each 

! 

C6
ij  by 

! 

Rij
"6 , where 

! 

Rij  is the distance between the centroids (centers of 

charge) of LMOs i and j. 
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